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Objective and Description of the Course:

Deep learning (DL) is a novel methodology currently receiving much attention and has been
successfully applied to a large variety of fields, such as data classification, image recognition, speech
recognition, natural language understanding, precision medicine, and computational biology. The
mathematical and computational methodology underlying deep learning models is very challenging, but
it is extremely important for further development of deep learning techniques.

The aim of this course is to prepare our students this modern computational skill for his/her future
research. This course will provide basic concepts on machine learning and basic statistical learning
theory, introduce the basic structure of artificial neural network (ANN) and convolutional neural network
(CNN), the techniques for network architecture design and training, and review several popular and
efficient CNNs for supervised regression and classification and their application in computer vision.
Moreover, to have better understanding for deep learning from mathematical aspect, the course will
introduce some necessary knowledge on convex and noncovex analysis, sub-gradient, optimality
characterization for first order optimization and several optimization algorithms for solving certain
classes of convex/nonconvex and smooth/nonsmooth optimization problems. In the end we will study
how to integrate deep leaning and optimization methods to design CNNs that have better performance
with much less parameters and are more interpretable.

The topic of this course is one of the rapid developing fields. There is no textbook available. I will
provide some references (recent papers). Students presentations, discussions and projects are
expected.
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 Meeting Time and Rooms:

  MWF 4 online (Synchronous Course)

Office Hours: MWF 5 or by appointment

 

  Arrangement of the Course::

Unit 1: Basic Concepts on Machine Learning (Tentatively week 1-3)

1.1 What is machine learning, types of machine learning, basic machine learning theory: under-
fitting and overfitting, bias and variance, sample and computational complexity. (week 1)

1.2. Maximum likelihood estimator (MLE) based data fitting; Bayes rule and maximum a priori
(MAP) estimation; (week 1-2)

1.3. Regression and classification as supervised learning: (Tentatively week 2-3)

1.3.1. Linear and nonlinear regression, model accuracy assessment, generalization;(week 2)

1.3.2. Classification: Linear models for classification, logistic regression, support vector machine.
(week 3)

Unit 2:  Basic concepts on convex and nonconvex analysis and useful optimization algorithms:
(Tentatively week 4-8)

2.1. Convex set, dual space and bidual space,
adjoint transformations, vector and matrix norms;(week 4)



2.2. Convex functions: Definition and basic properties of convex functions, L-smooth function,
convex conjugate function,
property and calculation of conjugate function;(week 5)

2.3. Sub-gradient and sub-differential: Definition and basic properties, sub-gradient calculus,
duality and optimality conditions, directional derivative; (week 6)

2.4. Several first order optimization algorithm widely used in deep learning: proximal gradient
method, gradient decent method, accelerated gradient decent method, stochastic gradient decent
method, adaptive stochastic gradient decent methods; (week 7-8)

Unit 3: Deep neural networks (DNNs) (Tentatively week 9-12)

3.1. Architecture and learning algorithm of artificial neural network (ANN): universality theory,
computation in forward pass, network training-backward propagation; (week 9-10)

3.2. Architecture and learning algorithm of convolutional neuron network (CNN), convolutional
operations, dropout, batch normalization, architecture designing, residual learning, network training
(week 10-11);

3.3. Case study and applications. (week 12)

Unit 4: Integration of deep learning and variational methods (Tentatively week 13-16)

4.1. Advantage of integration of deep learning and variational methods, framework of learnable
optimization algorithm (LOA); (week 13)

4.2. More first order optimization methods: Alternating direction method of multipliers (ADMM) for
equality constrained convex optimization, primal-dual algorithms; (week 13-14)

4.3. Types of LOAs. Case study: Prox-net (ISTA-net); ADMM-net, Primal-dual-net. Gradient-
decent-net (variational-net) and their applications. (week 15-16)

 
Additional Information:
 
Grading:
Students will be required to present one to two papers or projects related to the course content. The
projects may be related to problems of particular interest to the individual student. Grades will be
assigned on the basis of the presentations or projects. Current UF grading policies can be found from
the following link https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx.
 
Honor Code: “UF students are bound by The Honor Pledge which states, “We, the members of the
University of Florida community, pledge to hold ourselves and our peers to the highest standards of



University of Florida community, pledge to hold ourselves and our peers to the highest standards of
honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the
University of Florida, the following pledge is either required or implied: “On my honor, I have neither
given nor received unauthorized aid in doing this assignment.” The Honor Code specifies a number of
behaviors that are in violation of this code and the possible sanctions. Furthermore, you are obligated to
report any condition that facilitates academic misconduct to appropriate personnel. If you have any
questions or concerns, please consult with the instructor or TAs in this class.”
 
Class Attendance: “Requirements for class attendance and make-up exams, assignments, and other
work in this course are consistent with university policies that can be found at:
https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx.”
 
Accommodations for Students with Disabilities: “Students with disabilities requesting
accommodations should first register with the Disability Resource Center (352-392-8565,
https://www.dso.ufl.edu/drc/) by providing appropriate documentation. Once registered, students will
receive an accommodation letter which must be presented to the instructor when requesting
accommodation. Students with disabilities should follow this procedure as early as possible in the
semester.”
 
Online Evaluations: “Students are expected to provide feedback on the quality of instruction in this
course by completing online evaluations at https://evaluations.ufl.edu. Evaluations are typically open
during the last two or three weeks of the semester, but students will be given specific times when they
are open. Summary results of these assessments are available to students at
https://evaluations.ufl.edu/results/.”
 
Contact information for the Counseling and Wellness Center: https://counseling.ufl.edu/, 392-1575;
and the University Police Department: 392-1111 or 9-1-1 for emergencies.

 
Diversity:
I and the department of Mathematics are committed to diversity and inclusion of all students in this
course. I acknowledge, respect, and value the diverse nature, background and perspective of students
and believe that it furthers academic achievements. It is our intent to present materials and activities
that are respectful of diversity: race, color, creed, gender, gender identity, sexual orientation, age,
religious status, national origin, ethnicity, disability, socioeconomic status, and any other distinguishing
qualities.
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