## Number Theory \& Mathematical Cryptography

(Two previous versions of [Spring 2013] and [Spring 2011] NT\&MC have nice photos of the class.)

MAT4930 2H22 : NT\&Math-Crypto counts as an Upper-division math-
elective.

##  <br> This is a 1 -semester course for folks interested in Mathematical Cryptography (major topic) and other aspects of Coding: Data Compression and (time permitting) Errorcorrecting codes. We will also cover one example of an Isomorphism code. <br> It is accessible to anyone with an introductory NT course or who has read the first chapter or two of a beginning NT text. <br> (I'd like you to know What a prime number is, and What mathematical induction is and What an equivalence relation is. Also helpful is how to "add two numbers mod N", and what the Euler phi function is.)

Good choices [all these books are in Marston Science Library, on campus] for self-study are

- Elementary Number Theory by James Strayer; or
- A Friendly Introduction Number Theory by Joseph Silverman; or
- Elementary Number Theory by David Burton; or
- the text by Vanden Eynden.

$\mathrm{V}^{\text {e'll }}$ have a test of prerequisite knowledge on Friday, 08Jan2016 The mini-test counts for little, about $2 \%-4 \%$ of course grade, and selects some topics from:
:: High-school knowledge (formula for a line between two points, the Quadratic Formula, intersecting a line with a parabola, etc.), and some
:: Sets\&Logic ideas (Equivalence relations, partial orders, binary operators, induction, pigeon-hole principle, cardinality, powerset operator, etc.)
:: Mathematical maturity (Do you remember your basis calculus stuff? Do you remember how to sum a geometric series?)
The : Math-Greek alphabet (pdf), which we will use in class frequently.
Available is a practice prereq.


## Resources from a previous incarnation of the course

- My Notes on Codes (pdf).
- xkcd Cryptography
- A topics guide (txt) for one of the exams.
- For the curious, Huffman's original 1952 paper (pdf).
- Empirical Entropy of English. (Claude Shannon's experiment); needs Java enabled, to run.


## Approx. Syllabus

- A review of modular arithmetic.
- Versions of The Euclidean Algorithm (the "Lightning Bolt" alg)
- Possibly. LBolt over the Gaussian Integers. Proving unique factorization in the Gaussian Integers. Using LBolt to write certain primes as sums-of-two-squares.
- Euler phifunction, Fermat's Little Thm. Euler-Fermat Thm (EFT). The Legendre and Jacobi symbols
- The RSA Cryptosystem.
- The Chinese Remainder Thm (CRT) and a brief introduction to Rings and Ring-isomorphism
- Huffman codes. Huffman's theorem on minimum expected coding-length codes. Uniquely-decodable codes and the Kraft-McMillan theorem.
- Elias delta code and the Ziv-Lempel adaptive code.
- Diffie-Hellman Cryptosystem. Shank's Baby-step Giant-step method for trying to break the Diffie-Hellman protocol.
- Pollard- $\rho$ factorization algorithm. Descent-from-the-Top algorithm for computing the mod-M mult. order of an element.
- Possibly. Pollard's p-1 factorization algorithm.
- Miller-Rabin algorithm. Possibly: Polytime testing whether $N$ is a prime-power.
- Multiplicative functions. Dirichlet convolution.
- Possibly. Along the way to developing cryptographic methods, we will solve a number of Diophantine equations, that is, algebraic equations where the only solutions that we allow are using integers. We will find all "Pythagorean triples" ( $a, b, c$ ) of positive integers for which
$a^{2}+b^{2}=c^{2}$.
We will discover that there is a two-parameter family of such solutions. See "Pythagorean Triples (pdf)" at Usually Useful Pamphlets.
- Possibly. Meshalkin Isomorphism code.


## ENCODING:


Three Examples of simple ciphers:
CAESAR: Shift of 9:

MULTIPLICATIVE-CIPHER: Mult by 5 :

AFFINE-CIPHER: Mult by 5, then add 9. x |-> $\left[5 *_{x}\right]+9(\bmod 32)$

Chalk Phone Time Computer/Proj Blackboard Humor E-Problems

## Resources on "The Web"

|  |  |  |
| :---: | :---: | :---: |
| א. If she saw this, |  | (TAotDM), WWSKnow? |

2. The decipherment of a substitution cipher appears in The Gold Bug, by Edgar Allan Poe.

ג. Wikipedia. See also Primality testing and links to original AKS article and improvement.
т. Historical Cryptography (Trinity College)>

ה. MathPages. (I haven't reviewed this.)
I. Sample chapters from the Handbook of Applied Cryptography. (I have not reviewed this book.)


The homepage of ... Mathematical Cryptography, with a link to its Errata sheet.
Here are links to this book at The Publisher's site and at Amazon.com

End-of-semester NT Individual project


The Individual Final Project will be due, slid ${ }^{u} n_{d_{e}}$
my office door (Little Hall 402, Northeast comer), no later than noon, Thursday, 21 Apr2016.

The project must be carefully typed, but diagrams may be hand-drawn.

At all times have a paper copy you can hand-in; I do NOT accept electronic versions. Print out a copy each day, so that you aluays have the latest version to hand-in; this, in case your printer or computer fails. (You are too old for "My dog ate my homework.")

