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20. Normed vector spaces

Let X be a vector space over a field K (in this course we always have either K = R

or K = C).

Definition 20.1. A norm on X is a function ‖ · ‖ : X → R satisfying:
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(i) (positivity) ‖x‖ ≥ 0 for all x ∈ X , and ‖x‖ = 0 if and only if x = 0;

(ii) (homogeneity) ‖kx‖ = |k|‖x‖ for all x ∈ X and k ∈ K, and

(iii) (triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X .

/

Using these three properties it is straightforward to check that the quantity

d(x, y) := ‖x− y‖

defines a metric on X . The resulting topology is the norm topology. The next proposition

is simple but fundamental; it says that the norm and the vector space operations are

continuous in the norm topology.

prop:normed-tvs Proposition 20.2 (Continuity of vector space operations). Let X be a normed vector

space over K.

a) If (xn) converges to x in X , then (‖xn‖) converges to ‖x‖ in R.

b) If (kn) converges to k in K and (xn) converges to x in X , then (knxn) converges

to kx in X .

c) If (xn) converges to x and (yn) converges to y in X , then (xn + yn) converges to

x+ y in X .

Proof. The proofs follow readily from the properties of the norm, and are left as exercises.

�
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Two norms ‖ · ‖1, ‖ · ‖2 on X are equivalent if there exist absolute constants C, c > 0

such that

c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 for all x ∈ X .

Equivalent norms determine the same topology on X and the same Cauchy sequences

(Problem
prob:equivalent-norms
20.2). A normed space is a Banach space if it is complete in the norm topology.

It follows that if X is equipped with two equivalent norms ‖ · ‖1, ‖ · ‖2 then it is complete

(a Banach space) in one norm if and only if it is complete in the other.

The following proposition gives a convenient criterion for a normed vector space to

be complete. A series
∑∞

n=1 xn in X is absolutely convergent if
∑∞

n=1 ‖xn‖ < ∞. The

series converges in X if the limit limN→∞
∑N

n=1 xn exists in X (in the norm topology).

(Quite explicitly, the series
∑∞

n=1 xn converges to x ∈ X if limN→∞

∥∥∥x−∑N
n=1 xn

∥∥∥ = 0.)

prop:abs-cvg-complete Proposition 20.3. A normed space (X , ‖ · ‖) is complete if and only if every absolutely

convergent series in X is convergent.

Proof. First suppose X is complete and
∑∞

n=1 xn is absolutely convergent. Write sN =∑N
n=1 xn for the N th partial sum and let ε > 0 be given. Since

∑∞
n=1 ‖xn‖ is convergent,

there exists an L such that
∑∞

n=L ‖xn‖ < ε. If N > M ≥ L, then

‖sN − sM‖ =

∥∥∥∥∥
N∑

n=M+1

xn

∥∥∥∥∥ ≤
N∑

n=M+1

‖xn‖ < ε.

Thus the sequence (sN) is Cauchy in X , hence convergent by hypothesis.
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Conversely, suppose every absolutely convergent series in X is convergent. Given a

Cauchy sequence (xn) from X, choose a super-Cauchy subsequence (yk); i.e., (yk = xnk)k

and

∞∑
k=1

‖yk+1 − yk‖ <∞.

(To do this, first choose N1 such that ‖xn − xm‖ < 2−1 for all n,m ≥ N1. Next choose

N2 > N1 such that ‖xn−xm‖ < 2−2 for all n,m ≥ N2. Continuing in this way recursively

defines an increasing sequence of integers (Nk)
∞
k=1 such that ‖xn − xm‖ < 2−k for all

n,m ≥ Nk. Set yk = xNk .) The series
∑∞

k=1(yk+1 − yk) is absolutely convergent and

hence, by hypothesis, convergent in X . In other words, the sequence (yk − y1)k of

partial sums converges in X which means that (xn) has a convergent subsequence. The

proof is finished by invoking a standard fact about convergence in metric spaces: if

(xn) is a Cauchy sequence which has a convergent subsequence, then the full sequence

converges. �

sec:norm-examples

20.1. Examples.

(a) Of course, Kn with the usual Euclidean norm ‖(x1, . . . xn)‖ = (
∑n

k=1 |xk|2)
1/2

is a

Banach space. The vector space Kn can also be equipped with the `p-norms

‖(x1, . . . xn)‖p :=

(
n∑
k=1

|xk|p
)1/p

for 1 ≤ p <∞, and the `∞-norm

‖(x1, . . . xn)‖∞ := max(|x1|, . . . |xn|).
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For 1 ≤ p <∞ and p 6= 2, it is not immediately obvious that ‖ · ‖p defines a norm.

We will prove this assertion later. It is not too hard to show that all of the `p

norms (1 ≤ p ≤ ∞) are equivalent on Kn (though the constants c, C depend on the

dimension n). It turns out that any two norms on a finite-dimensional vector space

are equivalent. As a corollary, every finite-dimensional normed space is a Banach

space. See Problem
prob:findim-basics
20.3.

(b) (Sequence spaces) Define

c0 := {f : N→ K| lim
m→∞

|f(m)| = 0}

`∞ := {f : N→ K| sup
m∈N
|f(m)| <∞}

`1 := {f : N→ K|
∞∑
m=0

|f(m)| <∞}.

It is a simple exercise to check that each of these is a vector space (a subspace of

the vector space of all functions f : N→ K). Define, for functions f : N→ K,

‖f‖∞ := sup
m
|f(m)|

‖f‖1 :=
∞∑
m=1

|f(m)|.

Then ‖f‖∞ defines a norm on both c0 and `∞, and ‖f‖1 is a norm on `1. Equipped

with these respective norms, each is a Banach space. We sketch the proof for c0.

Verification of the other two assertions is left as exercises (Problem
prob:norm-examples
20.4).

The key observation is that (fn) converges to f in the ‖ · ‖∞ norm if and only if

(fn) converges to f uniformly as functions on N. Suppose (fn) is a Cauchy sequence
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in c0. Then the sequence of functions fn is uniformly Cauchy on N, and in particular

converges pointwise to a function f . To this end, let ε > 0 be given. There is an

N so that ‖fm − fn‖ < ε for m,n ≥ N . Thus, for each n ≥ N , all ` ∈ N and all

m ≥ n ≥ N , |fm(`) − fn(`)| < ε and thus, |f(`) − fN(`)| ≤ ε for all `. There is an

M so that |fN(`)| < ε for ` ≥M . Hence, for such `,

|f(`)| ≤ |fN(`)|+ ε < 2ε.

Thus f ∈ c0 and (fn) converges to f in c0.

Along with these spaces it is also helpful to consider the vector space

c00 := {f : N→ K|f(n) = 0 for all but finitely many n}

Notice that c00 is a vector subspace of each of c0, `
1 and `∞. Thus it can be equipped

with either the ‖ · ‖∞ or ‖ · ‖1 norms. It is not complete in either of these norms,

however. What is true is that c00 is dense in c0 and `1 (but not in `∞). (See

Problem
prob:c00
20.9).

(c) (L1 spaces) Let (X,M ,m) be a measure space. The quantity

‖f‖1 :=

∫
X

|f | dm

defines a norm on L1(m), provided we agree to identify f and g when f = g a.e.

(Indeed the chief motivation for making this identification is that it makes ‖ · ‖1 into

a norm. Note that `1 from the last example is a special case (what is the measure

space?))
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prop:L1-complete Proposition 20.4. L1(m) is a Banach space.

Proof. It suffices to verify the hypotheses of Proposition
prop:abs-cvg-complete
20.3. If

∑∞
n=1 fn is abso-

lutely convergent (so that
∑∞

n=1 ‖fn‖1 <∞), then

∞∑
n=1

|fn| dm <∞.

Thus the function g :=
∑∞

n=1 |fn| belongs to L1 and is thus finite m-a.e. by Tonelli.

In particular the sequence of partial sums sN =
∑N

n=1 fn is a sequence of measurable

functions with |sN | ≤ g that converges pointwise a.e. to a measurable function f .

Hence by the DCT and its corollary, f ∈ L1 and the partial sums (sN)N converges

to f in L1. �

(d) (Lp spaces) Again let (X,M ,m) be a measure space. For 1 ≤ p < ∞ let Lp(m)

denote the set of measurable functions f for which

‖f‖p :=

(∫
X

|f |p dm
)1/p

<∞

(again we identify f and g when f = g a.e.). It turns out that this quantity is a

norm on Lp(m), and Lp(m) is complete, though we will not prove this yet (it is not

immediately obvious that the triangle inequality holds when p > 1). The sequence

space `p is defined analogously: it is the set of f : N→ K for which

‖f‖p :=

(
∞∑
n=1

|f(n)|p
)1/p

<∞

and this quantity is a norm making `p into a Banach space.
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When p =∞, we define L∞(m) to be the set of all functions f : X → K with the

following property: there exists M > 0 such that

|f(x)| ≤M for m− a.e. x ∈ X; (1) eqn:L-infty-def

as for the other Lp spaces we identify f and g when there are equal a.e. When

f ∈ L∞, let ‖f‖∞ be the smallest M for which (
eqn:L-infty-def
1) holds. Then ‖ · ‖∞ is a norm

making L∞(m) into a Banach space.

(e) (C(X) spaces) Let X be a compact metric space and let C(X) denote the set of

continuous functions f : X → K. It is a standard fact from advanced calculus that

the quantity ‖f‖∞ := supx∈X |f(x)| is a norm on C(X). A sequence is Cauchy in

this norm if and only if it is uniformly Cauchy. It is thus also a standard fact that

C(X) is complete in this norm—completeness just means that a uniformly Cauchy

sequence of continuous functions on X converges uniformly to a continuous function.

This example can be generalized somewhat: let X be a locally compact metric

space. Say a function f : X → K vanishes at infinity if for every ε > 0, there

exists a compact set K ⊂ X such that supx/∈K |f(x)| < ε. Let C0(X) denote the

set of continuous functions f : X → K that vanish at infinity. Then C0(X) is a

vector space, the quantity ‖f‖∞ := supx∈X |f(x)| is a norm on C0(X), and C0(X) is

complete in this norm. (Note that c0 from above is a special case.)

(f) (Subspaces and direct sums) If (X , ‖ · ‖) is a normed vector space and Y ⊂ X is a

vector subspace, then the restriction of ‖ · ‖ to Y is clearly a norm on Y . If X is a
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Banach space, then (Y , ‖ · ‖) is a Banach space if and only if Y is closed in the norm

topology of X . (This is just a standard fact about metric spaces—a subspace of a

complete metric space is complete in the restricted metric if and only if it is closed.)

If X ,Y are vector spaces then the algebraic direct sum is the vector space of

ordered pairs

X ⊕ Y := {(x, y) : x ∈ X , y ∈ Y}

with entrywise operations. If X , Y are equipped with norms ‖ · ‖X , ‖ · ‖Y , then each

of the quantities

‖(x, y)‖∞ := max(‖x‖X , ‖y‖Y),

‖(x, y)‖1 := ‖x‖X + ‖y‖Y

is a norm on X ⊕ Y . These two norms are equivalent; indeed it follows from the

definitions that

‖(x, y)‖∞ ≤ ‖(x, y)‖1 ≤ 2‖(x, y)‖∞.

If X and Y are both complete, then X ⊕Y is complete in both of these norms. The

resulting Banach spaces are denoted X ⊕∞ Y , X ⊕1 Y respectively.

(g) (Quotient spaces) If X is a normed vector space and M is a proper subspace, then

one can form the algebraic quotient X/M, defined as the collection of distinct cosets

{x+M : x ∈ X}. From linear algebra, X/M is a vector space under the standard
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operations. If M is a closed subspace of X , then the quantity

‖x+M‖ := inf
y∈M
‖x− y‖

is a norm on X/M, called the quotient norm. (Geometrically, ‖x +M‖ is the

distance in X from x to the closed set M.) It turns out that if X is complete, so is

X/M. See Problem
prob:quotient-norm
20.20.

More examples are given in the exercises and further examples will appear after the

development of some theory.

20.2. Linear transformations between normed spaces.

Definition 20.5. Let X ,Y be normed vector spaces. A linear transformation T : X → Y

is bounded if there exists a constant C > 0 such that ‖Tx‖Y ≤ C‖x‖X for all x ∈ X . /

Remark 20.6. Note that in this definition it would suffice to require that ‖Tx‖Y ≤

C‖x‖X just for all x 6= 0, or for all x with ‖x‖X = 1 (why?) �

The importance of boundedness and the following simple proposition is hard to

overstate. Recall, a mapping f : X → Y between metric spaces is Lipschitz continuous

if there is a constant C > 0 such that d(f(x), f(y)) ≤ Cd(x, y) for all x, y ∈ X. A simple

exercise shows Lipschitz continuity implies continuity.

prop:bdd-iff-cns Proposition 20.7. If T : X → Y is a linear transformation between normed spaces,

then the following are equivalent:
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(i) T is bounded.

(ii) T is Lipschitz continuous.

(iii) T is uniformly continuous.

(iv) T is continuous.

(v) T is continuous at 0.

Moreover, in this case,

‖T‖ := sup{‖Tx‖ : ‖x‖ = 1}

= sup{‖Tx‖
‖x‖

: x 6= 0}

= inf{C : ‖Tx‖ ≤ C‖x‖ for all x ∈ X}

and ‖T‖ is the smallest number (the infimum is attained) such that

‖Tx‖ ≤ ‖T‖ ‖x‖ (2) eqn:op-norm-ineq

for all x ∈ X .

Proof. Suppose T is bounded so that there exists a C > 0 such that ‖Tx‖ ≤ C‖x‖ for

all x ∈ X . Thus, if x, y ∈ X , then, ‖Tx − Ty‖ = ‖T (x − y)‖ ≤ C‖x − y‖ by linearity

of T . Hence (i) implies (ii). The implications (ii) implies (iii) implies (iv) implies (v)

are evident. The proof of (v) implies (i) exploits the homogeneity of the norm and the

linearity of T . By hypothesis, with ε = 1 there exists δ > 0 such that if ‖x‖ < δ, then

‖Tx‖ < 1. Fix a nonzero vector x ∈ X and a real number 0 < λ < δ. The vector

λx/‖x‖ has norm less than δ, so∥∥∥∥T ( λx

‖x‖

)∥∥∥∥ = λ
‖Tx‖
‖x‖

< 1.
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Rearranging this we find ‖Tx‖ ≤ (1/λ)‖x‖ for all x 6= 0, which shows T is bounded; in

fact we can take C = 1
δ
.

The rest of the proof is left as an exercise. �

The set of all bounded linear operators from X to Y is denoted B(X ,Y). It is a

vector space under the operations of pointwise addition and scalar multiplication. The

quantity ‖T‖ is called the operator norm of T .

Proposition 20.8. For normed vector spaces X and Y, the operator norm makes

B(X ,Y) into a normed vector space that is complete if Y is complete.

Proof. That B(X ,Y) is a normed vector space follows readily from the definitions and

is left as an exercise. Suppose now Y is complete, and let Tn be a Cauchy sequence in

B(X ,Y). For each x ∈ X , we have

‖Tnx− Tmx‖ = ‖(Tn − Tm)x‖ ≤ ‖Tn − Tm‖‖x‖ (3) eq:TnTm

which shows that (Tnx) is a Cauchy sequence in Y . By hypothesis, Tnx converges in Y .

Define T : X → Y by setting Tx := y. It is straightforward to check that T is linear.

Let B denote the closed unit ball in X . The sequence (Tn|B) is uniformly Cauchy

by equation (
eq:TnTm
3) and converges pointwise to T |B. Hence T |B is continuous and (Tn|B)

converges uniformly to T |B. It follows that T is continuous at 0 and therefore T is

continuous. Since ‖Tn − T‖ = sup{‖(Tn − T )x‖ : x ∈ B} and since (Tn|B) converges to

T |B uniformly,
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** explicitly, given ε > 0 there is an N such that if n ≥ N , then ‖(Tn)|Bx− TBx‖ ≤ ε;

thus for |x| ≤ 1, ‖Tnx− Tx‖ ≤ ε **

it follows that (Tn) converges to T in B(X ,Y).

�

If T ∈ B(X ,Y) and S ∈ B(Y ,Z), then two applications of the the inequality (
eqn:op-norm-ineq
2)

gives, for x ∈ X ,

‖STx‖ ≤ ‖S‖‖Tx‖ ≤ ‖S‖‖T‖‖x‖

and it follows that ST ∈ B(X ,Z) and ‖ST‖ ≤ ‖S‖‖T‖. In the special case that Y = X

is complete, B(X ) := B(X ,X ) is an example of a Banach algebra.

The following proposition is very useful in constructing bounded operators—at least

when the codomain is complete. Namely, it suffices to define the operator (and show

that it is bounded) on a dense subspace.

prop:extending-bounded-operators Proposition 20.9 (Extending bounded operators). Let X , Y be normed vector spaces

with Y complete, and E ⊂ X a dense linear subspace. If T : E → Y is a bounded linear

operator, then there exists a unique bounded linear operator T̃ : X → Y extending T (so

T̃ |E = T ). Further ‖T̃‖ = ‖T‖.

Proof. Recall, if X, Y are metric spaces, Y is complete, D ⊂ X is dense and f : D → Y is

uniformly continuous, then f has a unique continuous extension f̃ : X → Y . Moreover,

this extension can be defined as follows. Given x ∈ X, choose a sequence (xn) from D
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converging to x and let f̃(x) = lim f(xn) (that the sequence f(xn) is Cauchy follows

from uniform continuity; that it converges from the assumption that Y is complete and

finally it is an exercise to show f̃(x) is well defined independent of the choice of (xn)).

Thus, it only remains to verify that the extension T̃ of T is in fact linear and ‖T‖ = ‖T̃‖.

Both are routine exercises. �

Remark: The completeness of Y is essential in the above proposition; Prob-

lem
prob:extending-bounded-operators
20.11 suggests a counterexample.

A bounded linear transformation T ∈ B(X ,Y) is said to be invertible if it is bijective

(being bijective automatically T−1 exists and is a linear transformation) and T−1 is

bounded from Y to X . Two normed spaces X ,Y are said to be (boundedly) isomorphic

if there exists an invertible linear transformation T : X → Y . As an example, given

equivalent norms ‖·‖1 and ‖·‖2 on a vector space X , the identity mapping ι : (X , ‖·‖1)→

(X , ‖ · ‖2) is (boundedly) invertible and witnesses the fact that these two normed vector

spaces are boundedly isomorphic.

An operator T : X → Y such that ‖Tx‖ = ‖x‖ for all x ∈ X is an isometry.

Note that an isometry is automatically injective and if it is also surjective then it is

automatically invertible and T−1 is also an isometry. An isometry need not be surjective,

however. The normed vector spaces are isometrically isomorphic if there is an invertible

isometry T : X → Y .
sec:bounded-operator-examples

20.3. Examples.
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(a) If X is a finite-dimensional normed space and Y is any normed space, then every

linear transformation T : X → Y is bounded. See Problem
prob:finitedimbounded
20.14

(b) Let X denote c00 equipped with the ‖ · ‖1 norm, and Y denote c00 equipped with

the ‖ · ‖∞ norm. Then the identity map idX ,Y : X → Y is bounded as an operator

(in fact its norm is equal to 1), but its inverse, the identity map ιY,X : Y → X is

unbounded. For positive integers n, let fn denote the element of c00 (1, . . . , 1, 0, . . . ).

Now ‖ιY,X (fn)‖1 = n, but ‖fn‖∞ = 1.

(c) Consider c00 with the ‖ · ‖∞ norm. Let a : N → K be any function and define a

linear transformation Ta : c00 → c00 by

Taf(n) = a(n)f(n). (4) eqn:Ta-def

The mapping Ta is bounded if and only if M = supn∈N |a(n)| < ∞, in which case

‖Ta‖ = M . In this case, Ta extends uniquely to a bounded operator from c0 to c0,

and one may check that the formula (
eqn:Ta-def
4) defines the extension. All of these claims

remain true if we use the ‖ · ‖1 norm instead of the ‖ · ‖∞ norm. In this case, we get

a bounded operator from `1 to itself.

(d) Define S : `1 → `1 as follows given the sequence (f(n))n from `1 let Sf(1) = 0 and

Sf(n) = f(n − 1) for n > 1. (Viewing f as a sequence, S shifts the sequence one

place to the right and fills in a 0 in the first position). This S is an isometry, but is

not surjective. In contrast, if X is finite-dimensional, then the rank-nullity theorem
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from linear algebra guarantees that every injective linear map T : X → X is also

surjective.

(e) Let C∞([0, 1]) denote the vector space of functions on [0, 1] with continuous deriva-

tives of all orders. The differentiation map D : C∞([0, 1]) → C∞([0, 1]) defined by

Df = df
dx

is a linear transformation. Since, for t ∈ R, we have Detx = tetx, it follows

that there is no norm on C∞([0, 1]) such that d
dx

is bounded.

20.4. Problems.

Problem 20.1. Prove Proposition
prop:normed-tvs
20.2.

prob:equivalent-norms Problem 20.2. Prove equivalent norms define the same topology and the same Cauchy

sequences.

prob:findim-basics Problem 20.3. (a) Prove all norms on a finite dimensional vector space X are equiva-

lent. Suggestion: Fix a basis e1, . . . en for X and define ‖
∑
akek‖1 :=

∑
|ak|. It is

routine to check that ‖ · ‖1 is a norm on X . Now complete the following outline.

(i) Let ‖ · ‖ be the given norm on X . Show there is an M such that ‖x‖ ≤M‖x‖1.

Conclude that the mapping ι : (X , ‖ · ‖1) → (X , ‖ · ‖) defined by ι(x) = x is

continuous;

(ii) Show that the unit sphere S = {x ∈ X : ‖x‖1 = 1} in (X , ‖ · ‖1) is compact in

the ‖ · ‖1 topology;
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(iii) Show that the mapping f : S → (X , ‖ · ‖) given by f(x) = ‖x‖ is continuous

and hence attains its infimum. Show this infimum is not 0 and finish the proof.

(b) Combine the result of part (a) with the result of Problem
prob:equivalent-norms
20.2 to conclude that every

finite-dimensional normed vector space is complete.

(c) Let X be a normed vector space and M ⊂ X a finite-dimensional subspace. Prove

M is closed in X .

prob:norm-examples Problem 20.4. Finish the proofs from Example
sec:norm-examples
20.1(b).

Problem 20.5. A function f : [0, 1]→ K is called Lipschitz continuous if there exists a

constant C such that

|f(x)− f(y)| ≤ C|x− y|

for all x, y ∈ [0, 1]. Define ‖f‖Lip to be the best possible constant in this inequality.

That is,

‖f‖Lip := sup
x6=y

|f(x)− f(y)|
|x− y|

Let Lip[0, 1] denote the set of all Lipschitz continuous functions on [0, 1]. Prove ‖f‖ :=

|f(0)|+ ‖f‖Lip is a norm on Lip[0, 1], and that Lip[0, 1] is complete in this norm.

Problem 20.6. Let C1([0, 1]) denote the space of all functions f : [0, 1]→ R such that

f is differentiable in (0, 1) and f ′ extends continuously to [0, 1]. Prove

‖f‖ := ‖f‖∞ + ‖f ′‖∞
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is a norm on C1([0, 1]) and that C1 is complete in this norm. Do the same for the norm

‖f‖ := |f(0)|+ ‖f ′‖∞. (Is ‖f ′‖∞ a norm on C1?)

Problem 20.7. Let (X,M ) be a measurable space. Let M(X) denote the (real) vector

space of all signed measures on (X,M ). Prove the total variation norm ‖µ‖ := |µ|(X)

is a norm on M(X), and M(X) is complete in this norm.

Problem 20.8. Prove, if X ,Y are normed spaces, then the operator norm is a norm on

B(X ,Y).

prob:c00 Problem 20.9. Prove c00 is dense in c0 and `1. (That is, given f ∈ c0 there is a sequence

fn in c00 such that ‖fn − f‖∞ → 0, and the analogous statement for `1.) Using these

facts, or otherwise, prove that c00 is not dense in `∞. (In fact there exists f ∈ `∞ with

‖f‖∞ = 1 such that ‖f − g‖∞ ≥ 1 for all g ∈ c00.)

Problem 20.10. Prove c00 is not complete in the ‖ · ‖1 or ‖ · ‖∞ norms. (After we have

studied the Baire Category theorem, you will be asked to prove that there is no norm

on c00 making it complete.)

prob:extending-bounded-operators Problem 20.11. Consider c0 and c00 equipped with the ‖ · ‖∞ norm. Prove there is no

bounded operator T : c0 → c00 such that T |c00 is the identity map. (Thus the conclusion

of Proposition
prop:extending-bounded-operators
20.9 can fail if Y is not complete.)
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Problem 20.12. Prove the ‖ · ‖1 and ‖ · ‖∞ norms on c00 are not equivalent. Conclude

from your proof that the identity map on c00 is bounded from the ‖ · ‖1 norm to the

‖ · ‖∞ norm, but not the other way around.

prob:c0rn) Problem 20.13. a) Prove f ∈ C0(Rn) if and only if f is continuous and lim|x|→∞ |f(x)| =

0. b) Let Cc(Rn) denote the set of continuous, compactly supported functions on Rn.

Prove Cc(Rn) is dense in C0(Rn) (where C0(Rn) is equipped with sup norm).

prob:finitedimbounded Problem 20.14. Prove, if X ,Y are normed spaces and X is finite dimensional, then

every linear transformation T : X → Y is bounded. Suggestion: Let d denote the

dimension of X and let {e1, . . . , ed} denote a basis. The function ‖ · ‖1 on X defined by

‖
∑
xjej‖1 =

∑
|xj| is a norm. Apply Problem

prob:findim-basics
20.3.

Problem 20.15. Prove the claims in Example
sec:bounded-operator-examples
20.3(c).

Problem 20.16. Let g : R → K be a (Lebesgue) measurable function. The map

Mg : f → gf is a linear transformation on the space of measurable functions. Prove,

if g /∈ L∞(R), then there is an f ∈ L1(R) such that gf /∈ L1(R). Conversely, show if

g ∈ L∞(R), then Mg is bounded from L1(R) to itself and ‖Mg‖ = ‖g‖∞.

Problem 20.17. Prove the claims about direct sums in Example
sec:norm-examples
20.1(f).

prob:FRiesz-lemma Problem 20.18. Let X be a normed vector space and M a proper closed subspace.

Prove for every ε > 0, there exists x ∈ X such that ‖x‖ = 1 and infy∈M ‖x− y‖ > 1− ε.
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(Hint: take any u ∈ X \M and let a = infy∈M ‖u− y‖. Choose δ > 0 small enough so

that a
a+δ

> 1− ε, and then choose v ∈M so that ‖u−v‖ < a+δ. Finally let x = u−v
‖u−v‖ .)

Note that the distance to a (closed) subspace need not be attained. Here is an

example. Consider the Banach space C([0, 1]) (with the sup norm of course and either

real or complex valued functions) and the closed subspace

T = {f ∈ C([0, 1]) : f(0) = 0 =

∫ 1

0

f dt}.

Using machinery in the next section it will be evident that T is a closed subspace of

C([0, 1]). For now, it can be easily verified directly. Let g denote the function g(t) = t.

Verify that, for f ∈ T , that

1

2
=

∫
g dt =

∫
(g − f) dt ≤ ‖g − f‖∞.

In particular, the distance from g to T is at least 1
2
.

Note that the function h = x− 1
2
, while not in T , satisfies ‖g − h‖∞ = 1

2
.

On the other hand, for any ε > 0 there is an f ∈ T so that ‖g − f‖∞ ≤ 1
2

+ ε

(simply modify h appropriately). Thus, the distance from g to T is 1
2
. Now verify, using

the inequality above, that h is the only element of C([0, 1]) such that
∫
h dt = 0 and

‖g − h‖∞ = 1
2
.

Problem 20.19. Prove, if X is an infinite-dimensional normed space, then the unit ball

ball(X ) := {x ∈ X : ‖x‖ ≤ 1} is not compact in the norm topology. (Hint: use the



D
RA
FT

22 MAA6617 COURSE NOTES SPRING 2018

result of Problem
prob:FRiesz-lemma
20.18 to construct inductively a sequence of vectors xn ∈ X such that

‖xn‖ = 1 for all n and ‖xn − xm‖ ≥ 1
2

for all m < n.)

Problem 20.20. (The quotient norm) Let X be a normed space andM a proper closedprob:quotient-norm

subspace.

a) Prove the quotient norm is a norm (see Example
sec:norm-examples
20.1(g)).

b) Show that the quotient map x→ x+M has norm 1. (Use Problem
prob:FRiesz-lemma
20.18.)

c) Prove, if X is complete, so is X/M.

Problem 20.21. A normed vector space X is called separable if it is separable as a

metric space (that is, there is a countable subset of X which is dense in the norm

topology). Prove c0 and `1 are separable, but `∞ is not. (Hint: for `∞, show that there

is an uncountable collection of elements {fα} such that ‖fα − fβ‖ = 1 for α 6= β.)
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21. Linear functionals and the Hahn-Banach theorem

If there is a “fundamental theorem of functional analysis,” it is the Hahn-Banach

theorem. The theorem is somewhat abstract-looking at first, but its importance will be

clear after studying some of its corollaries.

Let X be a normed vector space over the field K. A linear functional on X is a

linear map L : X → K. As one might expect, we are especially interested in bounded

linear functionals. Since K = R or C is complete, the vector space of bounded linear

functionals B(X ,K) is itself a Banach space (complete normed vector space). This space

is called the dual space of X and is denoted X ∗. It is not yet obvious that X ∗ need be

non-trivial (that is, that there are any bounded linear functionals on X besides 0). One

corollary of the Hahn-Banach theorem is there exist enough bounded linear functionals

on X to separate points.

sec:dual-examples

21.1. Examples. For each of the sequence spaces c0, `
1, `∞, for each n the map f →

f(n) is a bounded linear functional. If we fix g ∈ `1, then the functional Lg : c0 → K

defined by

Lg(f) :=
∞∑
n=0

f(n)g(n)

is bounded, since

|Lg(f)| ≤
∞∑
n=0

|f(n)g(n)| ≤ ‖f‖∞
∞∑
n=0

|g(n)| = ‖g‖1‖f‖∞.
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This inequality shows that ‖Lg‖ ≤ ‖g‖1. In fact, equality holds, and every bounded

linear functional on c0 is of this form:

prop:dual-of-c0 Proposition 21.1. The map Φ : `1 → c∗0 defined by Φ(g) = Lg is an isometric isomor-

phism from `1 onto the dual space c∗0.

Proof. We have already seen that each g ∈ `1 gives rise to a bounded linear functional

Lg ∈ c∗0 via

Lg(f) :=
∞∑
n=0

g(n)f(n)

and that ‖Lg‖ ≤ ‖g‖1. We will prove simultaneously that this map is onto and that

‖Lg‖ ≥ ‖g‖1.

Let L ∈ c∗0. We will first show that there is unique g ∈ `1 so that L = Lg. Let

en ∈ c0 be the indicator function of n, that is

en(m) = δnm.

Define a function g : N→ K by

g(n) = L(en).

We claim that g ∈ `1 and L = Lg. To see this, fix an integer N and let h ∈ c00 be the

function

h(n) =

{
g(n)/|g(n)| if n ≤ N and g(n) 6= 0

0 otherwise.

By definition h ∈ c00 and ‖h‖∞ ≤ 1. Note that h =
∑N

n=0 h(n)en. Now

N∑
n=0

|g(n)| =
N∑
n=0

h(n)g(n) = L(h) = |L(h)| ≤ ‖L‖‖h‖ ≤ ‖L‖.
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It follows that g ∈ `1 and ‖g‖1 ≤ ‖L‖. Moreover, the same calculation shows that

L = Lg when restricted to c00, so by the uniqueness of extensions of bounded operators,

L = Lg. Thus the map g → Lg is onto and

‖g‖1 ≤ ‖L‖ = ‖Lg‖ ≤ ‖g‖1.

�

prop:dual-of-ell1 Proposition 21.2. (`1)∗ is isometrically isomorphic to `∞.

Proof. The proof follows the same lines as the proof of the previous proposition; the

details are left as an exercise. �

The same mapping g → Lg also shows that every g ∈ `1 gives a bounded linear

functional on `∞, but it turns out these do not exhaust (`∞)∗ (see Problem
prob:ell-infty-dual
21.11).

If f ∈ L1(m) and g is a bounded measurable function with supx∈X |g(x)| = M , then

the map

Lg(f) :=

∫
X

fg dm

is a bounded linear functional of norm at most M . We will prove in Section
sec:Lp
24 that the

norm is in fact equal to M , and every bounded linear functional on L1(m) is of this type

(at least when m is σ-finite).

If X is a compact metric space and µ is a finite, signed Borel measure on X, then

Lµ(f) :=

∫
X

f dµ
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is a bounded linear functional on CC(X) with norm ‖µ‖ = |µ|(X) (see Problem
prob:normC(X)star
21.8).

A version of the Riesz Markov Theorem says the converse is true too.

thm:RM Theorem 21.3 (Riesz-Markov). Suppose X is a compact Hausdorff space. If λ ∈ C(X)∗,

then there exists a unique regular Borel measure σ such that, for f ∈ C(X),

λ(f) =

∫
X

f dσ.

The result is true with both real and complex scalars. Focusing on the case of real

scalars, the strategy is to write λ as the difference of positive linear functionals on C(X)

and apply the Riesz-Markov Theorem (twice). (For complex scalars, write λ in terms of

its real and imaginary parts and apply the result in the real case (twice)).

A function f ∈ C(X) is positive (really nonnegative) if f(x) ≥ 0 for all x ∈ X, writ-

ten f ≥ 0. Let C(X)+ denote the positive elements of C(X). Given linear functionals

λ, ρ ∈ C(X)∗, the inequality λ ≤ ρ means that λ(f) ≤ ρ(f) for all f ∈ C(X)+.

21.2. The Hahn-Banach Extension Theorem. To state and prove the Hahn-Banach

Extension Theorem, we first work in the setting K = R, then extend the results to the

complex case.

Definition 21.4. Let X be a real vector space. A Minkowski functional is a function

p : X → R such that p(x + y) ≤ p(x) + p(y) and p(λx) = λp(x) for all x, y ∈ X and

nonnegative λ ∈ R. /



D
RA
FT

MAA6617 COURSE NOTES SPRING 2018 27

For example, if L : X → R is any linear functional, then the function p : X → R

defined by p(x) := |L(x)| is a Minkowski functional. More generally if ‖ · ‖ is a seminorm

on X , then p : X → R defined by p(x) = ‖x‖ is a Minkowski functional.

thm:r-hb Theorem 21.5 (The Hahn-Banach Theorem, real version). Let X be a vector space over

R, p a Minkowski functional on X , and M a subspace of X . If L a linear functional on

M such that L(x) ≤ p(x) for all x ∈ M, then there exists a linear functional L′ on X

such that

(i) L′|M = L (L′ extends L)

(ii) L′(x) ≤ p(x) for all x ∈ X (L′ is dominated by p).

The proof will invoke Zorns Lemma, a result that is equivalent to the axiom of

choice (as well as the well ordering principal and the Hausdorff maximality principal).

A partial order � on a set is a relation that is reflexive, symmetric and transitive; that

is x � x for all x ∈ S; for x, y ∈ S if x � y and y � x, then x = y; and for x, y, z ∈ §, if

x � y and y � z, then x � z. We call S, or more precisely, (S,�) a partially ordered set

or poset. A subset T of S is totally ordered, if for each x, y ∈ T either x � y or y � x.

A totally ordered subset T is often called a chain. An upper bound z for a chain T is

an element z ∈ S such that t � z for all t ∈ T . A maximal element for S is w ∈ S that

has no successor; that is there does not exist an s ∈ S such that s 6= w and w � s.
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Theorem 21.6 (Zorn’s Lemma). Suppose S is a partially ordered set. If every chain in

S has an upper bound, then S has a maximal element.

Proof. The idea is to show that the extension can be done one dimension at a time and

then infer the existence of an extension to the whole space by appeal to Zorn’s lemma.

We may of course assumeM 6= X . So, fix a vector x ∈ X \M and consider the subspace

M+ Rx ⊂ X . For any m1,m2 ∈M, by hypothesis,

L(m1) + L(m2) = L(m1 +m2) ≤ p(m1 +m2) ≤ p(m1 − x) + p(m2 + x).

Rearranging gives, for m1,m2 ∈M,

L(m1)− p(m1 − x) ≤ p(m2 + x)− L(m2)

and thus

sup
m∈M
{L(m)− p(m− x)} ≤ inf

m∈M
{p(m+ x)− L(m)}.

Now choose any real number λ satisfying

sup
m∈M
{L(m)− p(m− x)} ≤ λ ≤ inf

m∈M
{p(m+ x)− L(m)}.

In particular, for m ∈M,

L(m)−λ ≤ p(m− x)

L(m)+λ ≤ p(m+ x).

(5) eq:choosel

Let N = M + Rx and define L′ : N → R by L′(m + tx) = L(m) + tλ for m ∈ M

and t ∈ R. Thus L′ is linear and agrees with L on M by definition. We now check

that L′(y) ≤ p(y) for all y ∈ M + Rx. Accordingly, suppose m ∈ M, t ∈ R and let
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y = m+ tx. If t = 0 there is nothing to prove. If t > 0, then, in view of equation (
eq:choosel
5),

L′(y) = L′(m+ tx) = t
(
L(
m

t
) + λ

)
≤ t p(

m

t
+ x) = p(m+ tx) = p(y)

and a similar estimate shows that L′(m+ tx) ≤ p(m+ tx) for t < 0.

We have thus successfully extended L toM+Rx. To finish the proof, let L denote

the set of pairs (L′,N ) where N is a subspace of X containingM, and L′ is an extension

of L to N obeying L′(y) ≤ p(y) on N . Declare (L′1,N1) � (L′2,N2) if N1 ⊂ N2 and

L′2|N1 = L′1. This relation � is a partial order on L. An exercise shows, given any

increasing chain (L′α,Nα) in L, it has as an upper bound (L′,N ) in L, whereN :=
⋃
αNα

and L(nα) := L′α(nα) for nα ∈ Nα. By Zorn’s lemma the collection L has a maximal

element (L′,N ) with respect to the order �. Since it always possible to extend to

a strictly larger subspace, the maximal element must have N = X , and the proof is

finished. �

The proof is a typical application of Zorn’s lemma - one knows how to carry out a

construction one step a time, but there is no clear way to do it all at once.

In the special case that p is a seminorm, since L(−x) = −L(x) and p(−x) = p(x)

the inequality L ≤ p is equivalent to |L| ≤ p.

Corollary 21.7. Suppose X is a normed vector space over R, M is a subspace, and L

is a bounded linear functional on M. If C ≥ 0 and |L(x)| ≤ C‖x‖ for all x ∈ M, then

there exists a bounded linear functional L′ on X extending L such that ‖L′‖ ≤ C.
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Proof. Apply the Hahn-Banach theorem with the Minkowski functional p(x) = C‖x‖.

�

Before obtaining further corollaries, we extend these results to the complex case.

First, if X is a vector space over C, then trivially it is also a vector space over R, and

there is a simple relationship between the R- and C-linear functionals.

prop:complexify Proposition 21.8. Let X be a vector space over C. If L : X → C is a C-linear

functional, then u(x) = ReL(x) defines an R-linear functional on X and L(x) = u(x)−

iu(ix). Conversely, if u : X → R is R-linear then L(x) := u(x)− iu(ix) is C-linear. If

in addition p : X → R is a seminorm, then |u(x)| ≤ p(x) for all x ∈ X if and only if

|L(x)| ≤ p(x) for all x ∈ X .

Proof. Problem
prob:complexify
21.5.

To prove the last statement, it is immediate that |u(x)| ≤ |L(x)| for all x ∈ X .

Conversely, given x there is a unimodular α such that αL(x) = |L(x)|. Hence,

|L(x)| = L(αx) = |u(αx)| ≤ p(αx) = |α| p(x) = p(x).

�

thm:c-hb Theorem 21.9 (The Hahn-Banach Theorem, complex version). Let X be a vector space

over C, p a seminorm on X , and M a subspace of X . If L :M→ C is a C-linear func-

tional satisfying |L(x)| ≤ p(x) for all x ∈ M, then there exists a C-linear functional

L′ : X → C such that
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(i) L′|M = L and

(ii) |L′(x)| ≤ p(x) for all x ∈ X .

Proof. The proof consists of applying the real Hahn-Banach theorem to extend the R-

linear functional u = ReL to a functional u′ : X → R and then defining L′ from u′ as in

Proposition
prop:complexify
21.8. The details are left as an exercise. �

The following corollaries are quite important, and when the Hahn-Banach theorem

is applied it is usually in one of the following forms:

cor:hb-cor Corollary 21.10. Let X be a normed vector space.

it:HB (i) If M⊂ X is a subspace and L : M → K is a bounded linear functional, then there

exists a bounded linear functional L′ : X → K such that L′|M = L and ‖L′‖ = ‖L‖.

(ii) (Linear functionals detect norms) If x ∈ X is nonzero, there exists L ∈ X ∗ with

‖L‖ = 1 such that L(x) = ‖x‖.

(iii) (Linear functionals separate points) If x 6= y in X , there exists L ∈ X ∗ such that

L(x) 6= L(y).

(iv) (Linear functionals detect distance to subspaces) If M ⊂ X is a closed subspace

and x ∈ X \M, there exists L ∈ X ∗ such that

(a) L|M = 0;

(b) ‖L‖ = 1; and

(c) L(x) = dist(x,M) = infy∈M ‖x− y‖ > 0.
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Proof. (i): Consider the (semi)norm p(x) = ‖L‖ ‖x‖. By construction, |L(x)| ≤ p(x)

for x ∈ M. Hence, there is a linear functional L′ on X such that L′|M = L and

|L′(x)| ≤ p(x) for all x ∈ X . In particular, ‖L′‖ ≤ ‖L‖. On the other hand, ‖L′‖ ≥ ‖L‖

since L′ agrees with L on M.

(ii): LetM be the one-dimensional subspace of X spanned by x. Define a functional

L :M→ K by L(t x
‖x‖) = t. In particular, |L(y)| = ‖y‖ for y ∈M and thus ‖L‖ = 1. By

(i), the functional L extends to a functional (still denoted L) on X such that ‖L‖ = 1.

(iii): Apply (ii) to the vector x− y.

(iv): Let δ = dist(x,M). Since M is closed, δ > 0. Define a functional L :

M+ Kx→ K by L(y + tx) = tδ. Since for t 6= 0 and y ∈M,

‖y + tx‖ = |t|‖t−1y + x‖ ≥ |t|δ = |L(y + tx)|,

by Hahn-Banach we can extend L to a functional L ∈ X ∗ with ‖L‖ ≤ 1. �

Needless to say, the proof of the Hahn-Banach theorem is thoroughly non-constructive,

and in general it is an important (and often difficult) problem, given a normed space X ,

to find some concrete description of the dual space X ∗. Usually doing so means finding

a Banach space Y and a bounded (or, better, isometric) isomorphism T : Y → X ∗.

Note that since X ∗ is a normed space, we can form its dual, denoted X ∗∗, and called

the bidual or double dual of X . There is a canonical relationship between X and X ∗∗.
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Each fixed x ∈ X gives rise to a linear functional x̂ : X ∗ → K via evaluation,

x̂(L) := L(x).

Since |x̂(L)| = |L(x)| ≤ ‖L‖ ‖x‖, the linear functional x̂ is in X ∗∗ and ‖x̂‖ ≤ ‖x‖.

Corollary 21.11. (Embedding in the bidual) The map x → x̂ is an isometric linearcor:embedinXss

map from X into X ∗∗.

Proof. First, from the definition we see that

|x̂(L)| = |L(x)| ≤ ‖L‖‖x‖

so x̂ ∈ X ∗∗ and ‖x̂‖ ≤ ‖x‖. It is straightforward to check (recalling that the L’s are

linear) that the map x → x̂ is linear. Finally, to show that ‖x̂‖ = ‖x‖, fix a nonzero

x ∈ X . From Corollary
cor:hb-cor
21.10(

it:HB
i) there exists L ∈ X ∗ with ‖L‖ = 1 and L(x) = ‖x‖. But

then for this x and L, we have |x̂(L)| = |L(x)| = ‖x‖ so ‖x̂‖ ≥ ‖x‖, and the proof is

complete. �

Definition 21.12. A Banach space X is called reflexive if the map ˆ : X → X ∗∗ is

surjective. /

In other words, X is reflexive if the mapˆ is an (isometric) isomorphism of X with

X ∗∗. For example, every finite dimensional Banach space is reflexive (Problem
prob:findim-reflexive
21.6).

Reflexive spaces often have nice properties. For instance, the distance from a point to a

(closed) subspace is attained. On the other hand, by Propositions
prop:dual-of-c0
21.1 and

prop:dual-of-ell1
21.2, c∗∗0 is
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isometrically isomorphic to `∞. In Problem
prob:badc0
21.7 you will show that c0 is not isometrically

isomorphic to `∞ and so c0 is not reflexive. After we have studied the Lp and `p spaces

in more detail, we will see that Lp is reflexive for 1 < p <∞.

The embedding into the bidual has many applications; one of the most basic is the

following.

Proposition 21.13 (Completion of normed spaces). If X is a normed vector space,

then there is a Banach space X and in isometric map ι : X → X such that the image

ι(X ) is dense in X .

Proof. Embed X into X ∗∗ via the map x→ x̂ and let X be the closure of the image of

X in X ∗∗. Since X is a closed subspace of a complete space, it is complete. �

The space X is called the completion of X . It is unique in the sense that if Y is

another Banach space and j : X → Y embeds X isometrically as a dense subspace of Y ,

then Y is isometrically isomorphic to X . The proof of this fact is left as an exercise.
sec:duals-and-adjoints

21.3. Dual spaces and adjoint operators. Let X ,Y be normed spaces with duals

X ∗,Y∗. If T : X → Y is a linear transformation and f : Y → K is a linear functional,

then T ∗f : X → K defined by

(T ∗f)(x) = f(Tx) (6) eqn:adjoint-def

is a linear functional on X . If T and f are both continuous (that is, bounded) then the

composition T ∗f is bounded, and more is true:
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thm:adjointmap Theorem 21.14. Let T : X → Y be a bounded linear transformation. For f ∈ Y∗,

define T ∗f by the formula (
eqn:adjoint-def
6). Then:

it:Tstarf (i) T ∗f belongs to X ∗, and T ∗ is a linear map from Y∗ into X ∗.

ii) T ∗ : Y∗ → X ∗ is bounded and ‖T ∗‖ = ‖T‖.

Proof. Since T is assumed bounded, for a fixed f ∈ Y∗ and all x ∈ X

|T ∗f(x)| = |f(Tx)| ≤ ‖f‖‖Tx‖ ≤ ‖f‖‖T‖‖x‖.

It follows that T ∗f is bounded on X (thus, belongs to X ∗) and

‖T ∗f‖ ≤ ‖f‖‖T‖. (7) eq:Tstarbounded

Thus T ∗ maps Y∗ into X ∗ and it is straightforward to verify that T ∗ is linear, which

proves item (
it:Tstarf
i). Moreover, the inequality of equation (

eq:Tstarbounded
7) also shows that T ∗ is bounded

and ‖T ∗‖ ≤ ‖T‖.

It remains to show ‖T ∗‖ ≥ ‖T‖. Toward this end, let 0 < ε < 1 be given and choose

x ∈ X with ‖x‖ = 1 and ‖Tx‖ > (1 − ε)‖T‖. Now consider Tx. By the Hahn-Banach

theorem (Corollary
cor:hb-cor
21.10(

it:HB
i)), there exists f ∈ Y∗ such that ‖f‖ = 1 and f(Tx) = ‖Tx‖.

For this f ,

‖T ∗‖ ≥ ‖T ∗f‖ ≥ |T ∗f(x)| = |f(Tx)| = ‖Tx‖ > (1− ε)‖T‖.

Hence, ‖T ∗‖ ≥ (1− ε)‖T‖. Since ε was arbitrary, ‖T ∗‖ ≥ ‖T‖. �

21.4. Duality for Sub and Quotient Spaces. The Hahn-Banach Theorem allows for

the identification of the duals of subspaces and quotients of Banach spaces. Informally,
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the dual of a subspace is a quotient and the dual of a quotient is a subspace. The precise

results are stated below for complex scalars, but they hold also for real scalars.

Given a (closed) subspaceM of the Banach space X , let π denote the map from X

to the quotient X/M. Recall (see Problem
prob:quotient-norm
20.20), the quotient is a Banach space with

the norm,

‖z‖ = inf{‖y‖ : π(y) = z}.

In particular, if x ∈ X , then

‖π(x)‖ = inf{‖x−m‖ : m ∈M}.

It is evident from the construction that π is continuous and ‖π‖ ≤ 1. Further, by

Problem
prob:FRiesz-lemma
20.18 (or see Proposition

prop:pi-star
21.15 below) ifM is a proper (closed) subspace, then

‖π‖ = 1. In particular, π∗ : (X/M)∗ → X ∗ (defined by π∗λ = λ ◦ π) is also continuous.

Moreover, if x ∈M, then

π∗λ(x) = 0.

Let

M⊥ = {f ∈ X ∗ : f(x) = 0 for all x ∈M}.

(M⊥ is called the annihilator of M in X ∗.) Recall, given x ∈ X , the element x̂ ∈ X ∗∗

is defined by x̂(τ) = τ(x), for τ ∈ X ∗. In particular,

M⊥ = ∩x∈M ker(x̂)

and thus M⊥ is a closed subspace of X ∗. Further, if λ ∈ (X/M)∗, then π∗λ ∈M⊥.
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prop:pi-star Proposition 21.15 (The dual of a quotient). The mapping ψ : (X/M)∗ → M⊥ de-

fined by

ψ(λ) = π∗λ

is an isometric isomorphism; i.e., the mapping π∗ : (X/M)∗ → X ∗ is an isometric

isomorphism onto M⊥.

Informally, the proposition is expressed as (X/M)∗ =M⊥.

Proof. The linearity of ψ follows from Theorem
thm:adjointmap
21.14 as does ‖ψ‖ = ‖π‖ ≤ 1. To prove

that ψ is isometric, let λ ∈ (X/M)∗ be given. Automatically, ‖ψ(λ)‖ ≤ ‖λ‖. To prove

the reverse inequality, fix r > 1. Let q ∈ X/M with ‖q‖ = 1 be given. There exists an

x ∈ X such that ‖x‖ < r and π(x) = q. Hence,

|λ(q)| = |λ(π(x))‖ = ‖ψ(λ)(x)‖ ≤ ‖ψ(λ)‖ ‖x‖ < r‖ψ(λ)‖.

Taking the supremum over such q shows ‖λ‖ ≤ r‖ψ(λ)‖. Finally, since 1 < r is arbitrary,

‖λ‖ ≤ ‖ψ(λ)‖.

To prove that ψ is onto, and complete the proof, let τ ∈M⊥ be given. Fix q ∈ X/M.

If x, y ∈ X and π(x) = q = π(y), then τ(x) = τ(y). Hence, the mapping λ : X/M→ C

defined by λ(q) = τ(x) is well defined. That λ is linear is left as an exercise. To see that

λ is continuous, observe that

|λ(q)| = |τ(x)| ≤ ‖τ‖ ‖x‖,
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for each x ∈ X such that π(x) = q. Taking the infimum over such x gives shows

|λ(q)| ≤ ‖τ‖ ‖q‖.

Finally, by construction ψ(λ) = τ. �

Since M⊥ is closed in X ∗, the quotient space X ∗/M⊥ is a Banach space. Let

ρ : X ∗ → X ∗/M⊥ denote the quotient mapping. Suppose λ ∈M∗. By Corollary
cor:hb-cor
21.10,

there is an f ∈ X ∗ such that f |M = λ; that is f is a bounded extension of λ (and indeed

f can be chosen such that ‖f‖ = ‖λ‖). If f and g are two extensions of λ to bounded

linear functionals on X ∗, then f(x) − g(x) = 0 for x ∈ M. Hence f − g ∈ M⊥ or

equivalently, ρ(f) = ρ(g). Consequently, the mapping ϕ : M∗ → X ∗/M⊥ defined by

ϕ(λ) = ρ(f) (where f is any bounded extension of λ to X ) is well defined. It is easily

verified that ϕ is linear. Further, given q ∈ X ∗/mm⊥, there is an f ∈ X ∗ such that

ρ(f) = q. In particular, with λ = f |M)¡ we have ϕ(λ) = ρ(f). Therefore ϕ is onto.

Proposition 21.16 (The dual of a subspace). The mapping ϕ :M∗ → X ∗/M⊥ is an

isometric isomorphism.

Proof. It remains to show that ϕ is an isometry, a fact that is an easy consequence of the

Hahn-Banach Theorem. Fix λ ∈ M∗ and let q = ϕ(λ). If f is any bounded extension
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of λ to X ∗, then ‖f‖ ≥ ‖λ‖. Hence,

‖ϕ(λ)‖ =‖q‖

= inf{‖f‖ : f ∈ X ∗, ρ(f) = q}

= inf{‖f‖ : f ∈ X ∗, f |M = λ}

≥‖λ‖.

On the other hand, by the Hahn-Banach Theorem there is a bounded extension g of λ

with ‖g‖ = ‖λ‖. Thus ‖λ‖ ≤ ‖q‖. �

A special case of the following useful fact was used in the proofs above. If X ,Y are

vector spaces and T : X → Y is linear and M is a subspace of the kernel of T , then T

induces a linear map T̃ : X/M→ Y . A canonical choice is M = ker(T ) in which case

T̃ is one-one. If X is a Banach space, Y is a normed vector space andM is closed, then

X/M is a Banach space.

lem:descend to quotient Lemma 21.17. If X is a Banach space,M is a (closed) subspace, Y is a normed vector

space and T : X → Y is continuous, then the mapping T̃ is bounded and ‖T̃‖ = ‖T‖.

Proof. Let π : X → X/M denote the quotient map and observe that T̃ π = T . Fix

q ∈ X/M. For any x ∈ X such that π(x) = q,

‖T̃ q‖ = ‖T̃ (π(x))‖ = ‖Tx‖ ≤ ‖T‖ ‖x‖.

Taking the infimum on x such that π(x) = q gives,

‖T̃ q‖ ≤ ‖T‖ ‖q‖.
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�

21.5. Problems.

prob:dualbasis Problem 21.1. Prove, if X is any normed vector space, {x1, . . . xn} is a linearly inde-

pendent set in X , and α1, . . . αn are scalars, then there exists a bounded linear functional

f on X such that f(xj) = αj for j = 1, . . . n. (Recall linear maps from a finite dimen-

sional normed vector space to a normed vector space are bounded.)

Problem 21.2. Let X ,Y be normed spaces and T : X → Y a linear transformation.

Prove T is bounded if and only if there exists a constant C such that for all x ∈ X and

f ∈ Y∗,

|f(Tx)| ≤ C‖f‖‖x‖; (8) eqn:bilinear-bdd-prob

in which case ‖T‖ is equal to the best possible C in (
eqn:bilinear-bdd-prob
8).

Problem 21.3. Let X be a normed vector space. Show that if M is a closed subspace

of X and x /∈ M, then M + Kx is closed. Use this result to give another proof that

every finite-dimensional subspace of X is closed.

Problem 21.4. Prove, ifM is a finite-dimensional subspace of a Banach space X , then

there exists a closed subspace N ⊂ X such that M∩N = {0} and M +N = X . (In

other words, every x ∈ X can be written uniquely as x = y + z with y ∈ M, z ∈ N .)

Hint: Choose a basis x1, . . . xn forM and construct, using Problem
prob:dualbasis
21.1 and the Hahn-

Banach Theorem, bounded linear functionals f1, . . . fn on X such that fi(xj) = δij. Now
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let N = ∩ni=1ker fi. (Warning: this conclusion can fail badly if M is not assumed finite

dimensional, even ifM is still assumed closed. Perhaps the first known example is that

c0 is not complemented in `∞, though it is nontrivial to prove.)

prob:complexify Problem 21.5. Prove Proposition
prop:complexify
21.8.

prob:findim-reflexive Problem 21.6. Prove every finite-dimensional Banach space is reflexive.

prob:badc0 Problem 21.7. Let B denote the subset of `∞ consisting of sequences which take values

in {−1, 1}. Show that any two (distinct) points of B are a distance 2 apart. Show, if

C is a countable subset of `∞, then there exists a b ∈ B such that ‖b − c‖ ≥ 1 for

all c ∈ C. Conclude `∞ is not separable. Prove there is no isometric isomorphism

Λ : c0 → `∞. As a corollary, conclude that c0 is not reflexive. (Of course, saying c0 6= `∞

via the canonical embedding of Corollary
cor:embedinXss
21.11 is much weaker than saying there is no

isometric isomorphism between c0 and `∞.)

prob:normC(X)star Problem 21.8. Prove, if µ is a finite regular (signed) Borel measure on a compact

Hausdorff space, then the linear function Lµ : C(X)→ R defined by

Lµ(f) =

∫
X

f dµ

is bounded (continuous) and ‖Lµ‖ = ‖µ‖ := |µ|(X). (See the Riesz-Markov Theorem

for positive linear functionals.)

Problem 21.9. Let X and Y be normed vector spaces and T ∈ L(X ,Y).
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a) Consider T ∗∗ : X ∗∗ → Y∗∗. Identifying X ,Y with their images in X ∗∗ and Y∗∗,

show that T ∗∗|X = T .

b) Prove T ∗ is injective if and only if the range of T is dense in Y .

c) Prove that if the range of T ∗ is dense in X ∗, then T is injective; if X is reflexive

then the converse is true.

prob:separable-dual Problem 21.10. Prove, if X is a Banach space and X ∗ is separable, then X is separable.

[Hint: let {fn} be a countable dense subset of X ∗. For each n choose xn such that

‖xn‖ = 1 and |fn(xn)| ≥ 1
2
‖fn‖. Show that the set of Q-linear combinations of {xn} is

dense in X .]

prob:ell-infty-dual Problem 21.11. a) Prove there exists a bounded linear functional L ∈ (`∞)∗ with

the following property: whenever f ∈ `∞ and limn→∞ f(n) exists, then L(f) is

equal to this limit. (Hint: first show that the set of such f forms a subspace

M⊂ `∞).

b) Show that such a functional L is not equal to Lg for any g ∈ `1; thus the map

T : `1 → (`∞)∗ given by T (g) = Lg is not surjective.

c) Give another proof that T is not surjective, using Problem
prob:separable-dual
21.10.
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22. The Baire Category Theorem and applications

Recall, a set D in a metric space X is dense if D = X. Thus D is dense if and only

if Dc does not contain a nonempty open set if and only if it has nontrivial intersection

with every nonempty open set. A topological space X is called a Baire space if it has

the following property: if (Un)∞n=1 is a countable sequence of open dense subsets of X,

then the intersection ∩∞n=1Un is dense in X.

thm:baire Theorem 22.1 (The Baire Category Theorem). Every complete metric space X is a

Baire space. In other words, if X is a complete metric space and if (Un)∞n=1 is a sequence

of open dense subsets of X, then ∩∞n=1Un is dense in X.

Theorem
thm:baire
22.1 is true if X is a locally compact Hausdorff space and there are con-

nections between the Baire Category Theorem and the axiom of choice.

A subset E ⊂ X is nowhere dense if its closure has empty interior. Equivalently,

E
c

is open and dense. A set F in a metric space X is first category (or meager) if it can

be expressed as the countable union of nowhere dense sets. In particular, a countable

union of first category sets is first category. A set G is second category if it is not first

category. For applications, the following corollary often suffices.

cor:baireinaction Corollary 22.2. If X is a complete metric space, then X is not a countable union of

nowhere dense sets; i.e., X is of second category in itself.
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Proof. Take complements and apply Theorem
thm:baire
22.1. ME?? Prove the contrapositive.

Suppose X = ∪En where the En are nowhere dense. Thus each (Ē)◦ is open and dense

and X = ∪Ēn. Taking complements,

∅ = ∩(Ēn)◦.

Hence X is not complete by Theorem
thm:baire
22.1. END ME?? �

Thus, the Baire property is used as a kind of pigeonhole principle: the “thick” Baire

space X cannot be expressed as a countable union of the “thin” nowhere dense sets En.

Equivalently, if X is Baire and X =
⋃
nEn, then at least one of the En is somewhere

dense.

The following lemma should be familiar from advanced calculus.

lem:weakfip Lemma 22.3. Let X be a complete metric space and suppose (Cn) is a sequence of

subsets of X. If

(i) each Cn is nonempty;

(ii) (Cn) is nested decreasing;

(iii) each Cn is closed; and

(iv) (diam(Cn)) converges to 0,

then there is an x ∈ X such that

{x} = ∩Cn.

Moreover, if xn ∈ Cn, then (xn) converges to some x.



D
RA
FT

MAA6617 COURSE NOTES SPRING 2018 45

Proof of Theorem
thm:baire
22.1. Let (Un)∞n=1 be a sequence of open dense sets in X and let I =

∩Un. To prove I is dense, it suffices to show that I has nontrivial intersection with every

nonempty open set W . Fix such a W . Since U1 is dense, there is a point x1 ∈ W ∩ U1.

Since U1 and W are open, there is a radius 0 < r1 < 1 such that the B(x1, r1) is contained

in W ∩U1. Similarly, since U2 is dense and open there is a point x2 ∈ B(x1, r1)∩U2 and

a radius 0 < r2 <
1
2

such that

B(x2, r2) ⊂ B(x1, r1) ∩ U2 ⊂ W ∩ U1 ∩ U2.

Continuing inductively, since each Un is dense and open there is a sequence of points

(xn)∞n=1 and radii 0 < rn <
1
n

such that

B(xn, rn) ⊂ B(xn−1, rn−1) ∩ Un ⊂ W ∩ (∩nj=1Un).

The sequence of sets (B(xn, rn)) satisfies the hypothesis of Lemma
lem:weakfip
22.3 and X is com-

pact. Hence there is an x ∈ X such that

x ∈ ∩nB(xn, rn) ⊂ W ∩ I.

�

We now give three important applications of the Baire category theorem in func-

tional analysis. These are the Principle of Uniform boundedness (also known as the

Banach-Steinhaus theorem), the Open Mapping Theorem, and the Closed Graph The-

orem. (In learning these theorems, keep careful track of what completeness hypotheses

are needed.)
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Theorem 22.4 (The Principle of Uniform Boundedness (PUB)). Suppose X ,Y are

normed spaces and {Tα : α ∈ A} ⊂ B(X ,Y) is a collection of bounded linear transfor-

mations from X to Y. Let B denote the set

B := {x ∈ X : M(x) := sup
α
‖Tαx‖ <∞}. (9) eqn:pub-hyp

If B is of the second category (thus not a countable union of nowhere dense sets) in X,

then

sup
α
‖Tα‖ <∞.

In particular, if X is complete and if the collection {Tα : α ∈ A} is pointwise bounded,

then it is uniformly bounded.

Proof. For each integer n ≥ 1 consider the set

Vn := {x ∈ X : M(x) > n}.

Since each Tα is bounded, the sets Vn are open. (Indeed, for each α the map x→ ‖Tαx‖

is continuous from X to R, so if ‖Tαx‖ > n for some α then also ‖Tαy‖ > n for

all y sufficiently close to x.) Let En denote the complement of Vn and observe that

B = ∪∞n=1En. Since B is assumed to be of the second category, there is an N such that

(ĒN)◦ is not empty. Since EN is closed, it follows that EN has nonempty interior; i.e.,

there is an x0 ∈ EN and r > 0 so that x0 − x ∈ EN for all ‖x‖ < r. Thus, for every α

and every ‖x‖ < r,

‖Tαx‖ ≤ ‖Tα(x− x0)‖+ ‖Tαx0‖ ≤ N +N.



D
RA
FT

MAA6617 COURSE NOTES SPRING 2018 47

That is, if ‖x‖ < r, then M(x) ≤ 2N . By rescaling we conclude that if ‖x‖ < 1, then

‖Tαx‖ ≤ 2N/r for all α and thus supα ‖Tα‖ ≤ 2N/r <∞. �

Given a subset B of a vector space X and a scalar s ∈ K, let sB = {sb : b ∈ B}.

Similarly, for x ∈ X , let B − x = {b − x : b ∈ B}. Let X ,Y be normed vector spaces

and suppose T : X → Y is linear. If B ⊂ X and s ∈ K is nonzero, then T (sB) = sT (B)

and further, an easy argument shows T (sB) = s T (B). It is also immediate that if B is

open, then so is B − x.

Recall that if X, Y are topological spaces, a mapping f : X → Y is called open if

f(U) is open in Y whenever U is open in X. In particular, if f is a bijection, then f is

open if and only if f−1 is continuous. In the case of normed linear spaces the condition

that a linear map be open can be refined somewhat.

lem:translate dilate Lemma 22.5 (Translation and Dilation lemma). Let X ,Y be normed vector spaces, let

B denote the open unit ball of X , and let T : X → Y be a linear map. The following are

equivalent.

(i) The map T is open;

(ii) T (B) contains an open ball centered to 0;

(iii) there is an s > 0 such that T (sB) contains an open ball centered to 0; and

(iv) T (sB) contains an open ball centered to 0 for each s > 0.
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Proof. This result is more or less immediate from the fact, for fixed z0 and r ∈ K,

that the translation map z → z + z0 and the dilation map z → rz are continuous in

a normed vector space. The implication (i) implies (ii) is immediate. The fact that

T (sB) = sT (B) for s > 0 readily shows (ii), (iii) and (iv) are equivalent.

To finish the proof it suffice to show (iv) implies (i). Accordingly, suppose (iv) holds

and let U ⊂ X be a given open set. To prove that T (U) is open, let y ∈ T (U) be given.

There is an x ∈ U such that T (x) = y. There is an s > 0 such that the ball B(x, s) lies

in U ; that is B(x, s) ⊂ U . The ball sB = B(0, s) = B(x, r)− x is an open ball centered

to 0. By hypothesis there is an r > 0 such that BY(0, r) ⊂ T (B(0, s)). (Here we use BY

to emphasize this ball is a subset of Y .) By linearity of T ,

BY(y, r) =BY(0, r) + y ⊂ T (B(0, s)) + y

=T (B(0, s)) + T (x) = T (B(0, s) + x) = T (B(x, s)) ⊂ T (U).

Thus T (U) is open. �

Theorem 22.6 (Open Mapping). Suppose that X is a Banach space, Y is a normed

vector space and T : X → Y is bounded. If the range of T is of second category, then

(i) T (X ) = Y;

(ii) Y is complete (so a Banach space); and

(iii) T is open.

In particular, if X ,Y are Banach spaces, and T : X → Y is bounded and onto, then

T is an open map.
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Proof. Observe that (i) follows immediately from (iii). To prove (iii), let B(x, r) denote

the open ball of radius r centered at x in X . Trivially X =
⋃∞
n=1B(0, n) and thus

T (X) =
⋃∞
n=1 T (B(0, n)). Since the range of T is assumed second category, there is

an N such that T (B(0, N)) is second category and hence not nowhere dense. In other

words, T (B(0, N)) has nonempty interior. By scaling (see Lemma
lem:translate dilate
22.5), T (B(0, 1)) has

nonempty interior. Hence, there exists p ∈ Y and r > 0 such that T (B(0, 1)) contains

the open ball BY(p, r). (Here the superscript Y is used to emphasize this ball is in Y .)

It follows that for all ‖y‖ < r,

y = −p+ (y + p) ∈ T (B(0, 2)).

In other words,

BY(0, r) ⊂ T (B(0, 2)).

By scaling, it follows that, for n ∈ N,

BY(0,
r

2n+1
) ⊂ T (B(0,

1

2n
)).

We will use the hypothesis that X is complete to prove BY(0, r
4
) ⊂ T (B(0, 1)).

Accordingly let y such that ‖y‖ < r
4

be given. Since y is in the closure of T (B(0, 1
2
)),

there is a y1 ∈ T (B(0, 1
2
)) such that ‖y − y1‖ < r

8
. Since y − y1 ∈ BY(0, r

8
) it is is in the

closure of T (B(0, 1
4
)). Thus there is a y2 ∈ T (B(0, 1

4
)) such that ‖(y − y1) − y2‖ < r

16
.

Continuing in this fashion produces a sequence (yj)
∞
j=1 from Y such that,

(a) ‖y −
∑n

j=1 yj‖ ≤
r

2n+2 ; and

(b) yn ∈ T (B(0, 1
2n

)
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for all n. It follows that
∑∞

j=1 yj converges to y. Further, for each j there is an xj ∈

B(0, 1
2j

) such that yj = Txj. Since

‖x‖ ≤
∞∑
j=1

‖xj‖ <
∞∑
k=1

2−k = 1,

the series
∑∞

j=1 xj converges to some x ∈ B(0, 1). It follows that y = Tx by continuity

of T . Consequently y ∈ T (B(0, 1)) and the proof of (iii) is complete.

To prove (ii), let M denote the kernel of T and T̃ the mapping T̃ : X/M → Y

determined by T̃ π = T . By Lemma
lem:descend to quotient
21.17, T̃ is continuous and one-one. Further its range

is the same as the range of T , namely Y , and is thus second category. Hence, by what

has already been proved, T̃ is an open map. and consequently T̃−1 is continuous. Hence

X/M and Y are isomorphic (though of course not necessarily isometrically isomorphic)

as normed vector spaces. Therefore, since X/M is complete, so is Y . �

Note that the proof of item (ii) in the Open Mapping Theorem shows, in the case

that in the case that T is one-one and its range is of second category, that T is onto and

its inverse is continuous. In particular, if T : X → Y is a continuous bijection and Y is

a Banach space (so the range of T is second category), then T−1 is continuous.

cor:banach-isomorphism Corollary 22.7 (The Banach Isomorphism Theorem). If X ,Y are Banach spaces and

T : X → Y is a bounded bijection, then T−1 is also bounded (hence, T is an isomor-

phism).
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To state the final result of this section, we need a few more definitions. Let X ,Y

be normed spaces. The Cartesian product X × Y is a topological space in the product

topology. A set is open in the product topology if and only if it can be written as a

union of products of open sets. Alternately, a set O is open if and only if for each

z = (x, y) ∈ O there exists open sets U ⊂ X and V ⊂ Y such that z ∈ U × V ⊂ O. It

is not too hard to show that X × Y is metrizable (in fact the product topology can be

realized by norming X × Y , e.g. with the norm ‖(x, y)‖ := max(‖x‖, ‖y‖)). It is easy

to see that a sequence zn = (xn, yn) converges in the product topology if and only if

both (xn) and (yn) converge. Further, if X ,Y are both Banach spaces (complete), then

X × Y is also complete and hence a Banach space. The space X × Y is equipped with

the coordinate projections πX (x, y) = x, πY(x, y) = y. It is clear from the definition of

the product topology that these maps are continuous. (In fact the product topology is

the coarsest topology such that the coordinate projections are continuous.)

Given a linear map T : X → Y , its graph is the set

G(T ) := {(x, y) ∈ X × Y : y = Tx}

Observe that since T is a linear map, G(T ) is a linear subspace of X ×Y . The transfor-

mation T is closed if G(T ) is a closed subset of X ×Y . It is an easy exercise to show that

G(T ) is closed if and only if whenever (xn, Txn) converges to (x, y), we have y = Tx.

Problem
prob:closed-not-bounded
22.2 gives an example where G(T ) is closed, but T is not continuous. On the
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other hand, if X ,Y are complete (Banach spaces), then G(T ) is closed if and only if T

is continuous.

Theorem 22.8 (The Closed Graph Theorem). If X ,Y are Banach spaces and T : X →

Y is closed, then T is bounded.

Proof. Let π1, π2 be the coordinate projections πX , πY restricted to G(T ); explicitly

π1(x, Tx) = x and π2(x, Tx) = Tx. Note that π1 is a bijection between G(T ) and X and

in particular π−1
1 (x) = (x, Tx). By hypothesis G(T ) is a closed subset of a Banach space

and hence a Banach space. Thus π1 is a bounded linear bijection between Banach spaces

and therefore, by Corollary
cor:banach-isomorphism
22.7, π−1

1 : X → G(T ) is bounded. Since π2 is bounded,

π2 ◦ π−1
1 : X → Y is continuous. To finish the proof, observe π2 ◦ π−1

1 (x) = π2(x, Tx) =

Tx.

�
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22.1. Problems.

Problem 22.1. Show that there exists a sequence of open, dense subsets Un ⊂ R such

that m(
⋂∞
n=1 Un) = 0.

prob:closed-not-bounded Problem 22.2. Consider the linear subspace D ⊂ c0 defined by

D = {f ∈ c0 : lim
n→∞

|nf(n)| = 0}

and the linear transformation T : D → c0 defined by (Tf)(n) = nf(n).

a) Prove T is closed, but not bounded. b) Prove T is bijective and T−1 : c0 → D is

bounded (and surjective), but not open. c) What can be said of D as a subset of c0?

Problem 22.3. Suppose X is a vector space equipped with two norms ‖ · ‖1, ‖ · ‖2 such

that ‖ · ‖1 ≤ ‖ · ‖2. Prove that if X is complete in both norms, then the two norms are

equivalent.

Problem 22.4. Let X ,Y be Banach spaces. Provisionally, say that a linear transfor-

mation T : X → Y is weakly bounded if f ◦ T ∈ X ∗ whenever f ∈ Y∗. Prove, if T is

weakly bounded, then T is bounded.

prob:TntoTPUB Problem 22.5. Let X ,Y be Banach spaces. Suppose (Tn) is a sequence in B(X ,Y)

and limn Tnx exists for every x ∈ X . Prove, if T is defined by Tx = limn Tnx, then T is

bounded.
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prob:Hamel-basis Problem 22.6. Suppose that X is a vector space with a countably infinite basis. (That

is, there is a linearly independent set {xn} ⊂ X such that every vector x ∈ X is

expressed uniquely as a finite linear combination of the xn’s.) Prove there is no norm

on X under which it is complete. (Hint: consider the finite-dimensional subspaces

Xn := span{x1, . . . xn}.)

Problem 22.7. The Baire Category Theorem can be used to prove the existence of

(very many!) continuous, nowhere differentiable functions on [0, 1]. To see this, let En

denote the set of all functions f ∈ C[0, 1] for which there exists x0 ∈ [0, 1] (which may

depend on f) such that |f(x) − f(x0)| ≤ n|x − x0| for all x ∈ [0, 1]. Prove the sets En

are nowhere dense in C[0, 1]; the Baire Category Theorem then shows that the set of

nowhere differentiable functions is second category. (To see that En is nowhere dense,

approximate an arbitrary continuous function f uniformly by piecewise linear functions

g, whose pieces have slopes greater than 2n in absolute value. Any function sufficiently

close to such a g will not lie in En.)

prob:L2firstinL1 Problem 22.8. Let L2([0, 1]) denote the Lebesgue measurable functions f : [0, 1]→ C

such that |f |2 is in L1([0, 1]). It turns out, as we will see later, that L2([0, 1]) is a linear

manifold (subspace of the vector space L1([0, 1])), though this fact is not needed for this

problem.

Let gn : [0, 1] → R denote the function which takes the value n on [0, 1
n3 ] and 0

elsewhere. Show,
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(i) if f ∈ L2([0, 1]), then limn→∞
∫
gnf dm = 0;

(ii) Ln : L1([0, 1])→ C defined by Ln(f) =
∫
gnf dm is bounded, and ‖Lg‖ = n;

(iii) conclude L2([0, 1]) is of the first category in L1([0, 1]).

prob:closed-graph-analytic Problem 22.9. A Banach space of functions on a set X is a vector subspace B of the

space of complex-valued functions on X with a norm ‖·‖ making B a Banach space such

that, for each x ∈ X, the mapping Ex : B → C defined by Ex(f) = f(x) is continuous

(bounded) and if f(x) = 0 for all x ∈ X, then f = 0.

Suppose g : X → C. Show, if gf ∈ B for each f ∈ B, then the linear map

Mg : B → B defined by Mgf = gf is bounded.

my solution: By the closed graph theorem, it suffices to show that the graph of Mg is

closed. To this end, suppose (fn, gfn) is a convergent sequence from G(Mg); that is that

there exist f, h ∈ B such that (fn, gfn) converges to (f, g). In particular, (fn) converges

to f and (gnf) converges to h in B. By continuity, for x ∈ X, we have (fn(x) = Ex(fn))

converges to f(x) = Ex(f). Similarly, (g(x)fn(x)) converges to h(x). On the other hand,

(g(x)fn(x)) also converges to g(x)f(x). Hence h(x) = g(x)f(x) and h = Mgf . Thus

(f, h) = (f,Mgf) ∈ G(Mg) and the proof is complete.

prob:complement-v-bdd Problem 22.10. Suppose X is a Banach space and M and N are closed subspaces.

Show, if for each x ∈ X there exist unique m ∈M and n ∈ N such that

x = m+ n,
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then the mapping P : X →M defined by Px = m is bounded.

prop:BanachLimit Problem 22.11. Here, for definiteness we take the scalar field R.

Let T : `∞ → `∞ denote the backward shift operator defined by Tf(n) = f(n+ 1)

A bounded linear functionals λ : `∞ → R satisfying,

(i) if f ∈ `∞ and (f(n)) converges, then λ(f) = limn→∞ f(n); and

(ii) λ(Tf) = λ(f)

is a Banach Limit.

Prove

(a) Banach limits exists.

(b) If λ is a Banach limit and f ∈ `∞, then

lim inf f(n) ≤ λ(f) lim sup f(n).

A sequence f ∈ `∞ for which (f(n)) does not converge, but λ(f) = µ(f) for all

Banach limits λ and µ is almost convergent. Show that g defined by g(n) = (−1)n is

almost convergent. (Suggestion: given a Banach limit λ, consider λ(g + Tg).
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23. Hilbert spaces

23.1. Inner products. Let K denote either C or R.

def:inner_product Definition 23.1. Let X be a vector space over K. An inner product on X is a function

u : X ×X → K such that, for all x, y, z ∈ X and all α, β ∈ K,

it:psd (i) u(x, x) ≥ 0 and u(x, x) = 0 if and only if x = 0.

it:antisym (ii) u(x, y) = u(y, x)

it:linear (iii) u(αx+ βy, z) = αu(x, z) + βu(y, z).

Notice that items (
it:antisym
ii) and (

it:linear
iii) together imply

it:more (iv) u(x, αy + βz) = αu(x, y) + βu(x, z).

/

Remark 23.2. A function u satisfying only items (
it:linear
iii) and (

it:more
23.1) is called a bilinear

form (when K = R) or a sesquilinear form (when K = C). In this case, if (
it:antisym
ii) is also

satisfied then u is called symmetric (R) or Hermitian (C). A Hermitian or symmetric

form satisfying u(x, x) ≥ 0 for all x is called positive semidefinite or a pre-inner product.

Typically, u is written 〈·, ·〉 so that u(x, y) = 〈x, y〉.

Finally, observe if u is a bilinear (resp. sesquilinear) form, then each z ∈ X induces

a linear functional on X defined by x 7→ u(x, z). �
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thm:cs Theorem 23.3 (The Cauchy-Schwarz inequality). Suppose 〈·, ·〉 is a pre-inner product

on the vector space X.

it:CS (i) For x, y ∈ X,

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉. (10) eqn:cs

(ii) If x, z ∈ X and 〈z, z〉 = 0, then 〈x, z〉 = 0.

(iii) The set

M = {x ∈ X : 〈x, x〉 = 0}

is a subspace of X.

(iv) Let Y = X/M and let π : X → Y denote the quotient map. The form [p, q] = 〈x, y〉

where x, y ∈ X are any choices of vectors such that π(x) = p and π(y) = q is well

defined and an inner product on Y .

Item (
it:CS
i) is known as the Cauchy-Schwarz inequality.

Proof. Fix x, y ∈ X. For t ∈ R, let λ = t〈x, y〉 and compute, using the nonnegativity

assumption

0 ≤〈x− λy, x− λy〉

=〈x, x〉 − 2t|〈x, y〉|2 + t2|〈x, y〉|2 〈y, y〉

=:P (t).

Since P (t) is a nonnegative quadratic, its discriminant is nonpositive; i.e.,

|〈x, y〉|4 ≤ 〈x, x〉 〈y, y〉 |〈x, y〉|2

and the Cauchy-Schwarz inequality follows.
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If 〈z, z〉 = 0 and x ∈ X, then (i) immediately implies 〈x, z〉 = 0, which proves (ii).

In particular, if both x, y ∈M and c ∈ C, then

〈x+ cy, x+ cy〉 = 〈x, x〉+ c〈y, x〉+ c〈x, y〉+ |c|2〈y, y〉 = 0

and so M is a subpace.

Item (iv) is an exercise in definition chasing. �
eg:hilby-examples

23.2. Examples.

Kn: It is easy to check that the standard scalar product on Rn is an inner product;

it is defined as usual by

〈x, y〉 =
n∑
j=1

xjyj (11) eqn:rn_inner_prod

where we have written x = (x1, . . . xn); y = (y1, . . . yn). Similarly, the standard

inner product of vectors z = (z1, . . . zn), w = (w1, . . . wn) in Cn is given by

〈z, w〉 =
n∑
j=1

zjwj. (12) eqn:cninnerprod

(Note that it is necessary to take complex conjugates of the w’s to obtain positive

definiteness.)

`2(N) : Let

`2(N) = {(a1, a2, . . . an, . . . ) | an ∈ K,
∞∑
j=1

|an|2 <∞}.

We may view `2 as a subset of the vector space S of all sequence (with domain

N) with entrywise addition and scalar multiplication. Define, for sequences a =
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(a1, a2, . . . ) and b = (b1, b2, . . . ) in `2,

∞∑
n=1

anbn (13) eqn:l2innerprod

is seen to converge absolutely using the comparison test and the inequality

2|anbn| ≤ |an|2 + |bn|2. From here it is not hard to prove that `2 is closed

under the vector space operations of S and is hence a vector space; and further

that (
eqn:l2innerprod
13) defines an inner product, 〈a, b〉 =

∑
anbn, called the standard inner

product on `2.

L2(µ): Generalizing the previous example, let (X,M , µ) be a measure space. Consider

the set of all measurable functions f : X → K such that

∫
X

|f |2 dµ <∞

The space L2(µ) is defined to be this set, modulo the equivalence relation which

declares f equivalent to g if f = g almost everywhere. From the inequality

2|fg| ≤ |f |2 + |g|2 it follows that L2(µ) is a vector space and that we can define

the inner product on L2(µ) by

〈f, g〉 =

∫
X

fg dµ. (14) eqn:L2_inner_prod

23.3. Norms. Given a vector space X over K and a semi-inner product 〈·, ·〉, define for

each x ∈ X

‖x‖ :=
√
〈x, x〉. (15) eqn:normdef
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This quantity should act something like a “length” of the vector x. Clearly ‖x‖ ≥ 0 for

all x, and moreover we have:

thm:innerprodnorm Theorem 23.4. Let X be a semi-inner product space over K, with ‖ · ‖ defined by

equation (
eqn:normdef
15). Then for all x, y ∈ X and α ∈ K,

it:triangle (a) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

it:scales (b) ‖αx‖ = |α|‖x‖.

Thus ‖ · ‖ is a seminorm on X.

If 〈·, ·〉 is an inner product, then also

it:definitely (c) ‖x‖ = 0 if and only if x = 0,

and thus ‖ · ‖ is a norm on X.

Proof. For all x, y ∈ X we have

‖x+ y‖2 = 〈x+ y, x+ y〉

= ‖x‖2 + 2Re 〈x, y〉+ ‖y‖2

≤ ‖x‖2 + 2|〈x, y〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 (16) eqn:normproofcs

= (‖x‖+ ‖y‖)2

where we have used the Cauchy-Schwarz inequality in (
eqn:normproofcs
16). Taking square roots finishes

the proof of item (
it:triangle
a). Items (

it:scales
b) and (

it:definitely
23.4) are left as exercises. �
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When X is an inner product space, the quantity ‖x‖ will be called the norm of x.

Item (
it:triangle
a) will be referred to as the triangle inequality. On Rn,

‖x‖ = (x2
1 + · · ·+ x2

n)1/2,

is the usual Euclidean norm.

lem:inner-product-continuity Lemma 23.5. Let H be an inner product space equipped with the norm topology. If (xn)

converges to x and (yn) converges to y in H, then (〈xn, yn〉) converges to 〈x, y〉.

Proof. By Cauchy-Schwarz,

|〈xn, yn〉 − 〈x, y〉| ≤ |〈xn, yn − y〉|+ |〈xn − x, y〉| ≤ ‖xn‖‖yn − y‖+ ‖xn − x‖‖y‖ → 0,

since ‖xn − x‖, ‖yn − y‖ → 0 and the sequence ‖xn‖ is bounded. �

23.4. Orthogonality. In this section we show that many of the basic features of the

Euclidean geometry of Kn extend naturally to the setting of an inner product space.

Definition 23.6. Let H be an inner product space.

(i) Two vectors x, y ∈ H are orthogonal if 〈x, y〉 = 0, written x ⊥ y.

(ii) Two subsets A,B of H are orthogonal if x ⊥ y for all x ∈ A and y ∈ B, written

A ⊥ B.

(iii) A subset A of H is orthogonal if x ⊥ y for each x, y ∈ A with x 6= y and is

orthonormal if also 〈x, x〉 = 1 for all x ∈ A.
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(iv) The orthogonal complement of a subset E of H is

E⊥ = {x ∈ H : 〈x, e〉 = 0 for all e ∈ E}.

/

The proof of the following lemma is an easy exercise. Indeed, the first item follows

immediately from Lemma
lem:inner-product-continuity
23.5 and the second from the positive definiteness of a norm.

lem:perpbasics Lemma 23.7. If E is a subset of an inner product space H, then

(i) E⊥ is a closed subspace of H;

(ii) E ∩ E⊥ ⊂ (0); and

(iii) E ⊂ (E⊥)⊥ = E⊥⊥.

Theorem 23.8 (The Pythagorean Theorem). If H is an inner product space and

f1, . . . fn are mutually orthogonal vectors in H, then

‖f1 + · · ·+ fn‖2 = ‖f1‖2 + · · ·+ ‖fn‖2.

Proof. When n = 2, we have

‖f1 + f2‖2 = ‖f1‖2 + 〈f1, f2〉+ 〈f2, f1〉+ ‖f2‖2

= ‖f1‖2 + ‖f2‖2.

The general case follows by induction. �
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Theorem 23.9 (The Parallelogram Law). If H is an inner product space and f, g ∈ H,

then

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2). (17) eqn:parallelogram

Proof. From the definition of the norm coming from the inner product,

‖f ± g‖2 = ‖f‖2 + ‖g‖2 ± 2Re 〈f, g〉.

Now add. �

Subtracting, instead of adding, in the proof of the Parallelogram Law gives the

polarization identity

‖f + g‖2 − ‖f − g‖2 = 4Re 〈f, g〉

in the case K = R.

thm:polarization Theorem 23.10 (The Polarization identity). If H is an inner product space over R,

then

〈f, g〉 =
1

4

(
‖f + g‖2 − ‖f − g‖2

)
. (18) eqn:polar

If H is a complex Hilbert space, then

〈f, g〉 =
1

4
[‖f + g‖2 − ‖f − g‖2 + ‖f − ig‖2 − ‖f + ig‖2] (19) eq:polarizationC

Remark: An elementary (but tricky) theorem of von Neumann says, in the real case,

that if H is any vector space equipped with a norm ‖ · ‖ such that the parallelogram

law (
eqn:parallelogram
17) holds for all f, g ∈ H, then H is an inner product space with inner product
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given by formula (
eqn:polar
18) in the case of real scalars and formula (

eq:polarizationC
19) in the case of complex

scalars. (The proof is simply to define the inner product by equation (
eqn:polar
18) or (

eq:polarizationC
19), and

check that it is indeed an inner product.)

23.5. Completeness.

Definition 23.11. A Hilbert space over K is an inner product space X over K that is

complete in the metric d(x, y) = ‖x− y‖. (Here, as usual, K is either C or R.) /

That the inner product spaces Kn are complete (and hence Hilbert spaces) is known

from elementary analysis. (Note that the complex case follows from the real case, since

the Euclidean norms are equal under the natural isomorphism Cn ∼= R2n.)

Theorem 23.12. L2(µ) is complete.

Proof. We use Proposition
prop:abs-cvg-complete
20.3. Accordingly suppose (fk) is a sequence in L2(µ) and∑∞

k=1 ‖fk‖ = B <∞. Define

Gn =
n∑
k=1

|fk| and G =
∞∑
k=1

|fk|.

By the triangle inequality, ‖Gn‖ ≤
∑n

k=1 ‖fk‖ ≤ B for all n. Thus, by the Monotone

Convergence Theorem and the Cauchy-Schwarz inequality,

∫
X

G2 dµ = lim
n→∞

∫
X

G2
n dµ ≤ B2. (20) eqn:G2integrable
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Thus G belongs to L2(µ) and in particular G(x) <∞ for almost every x. Hence, by the

definition of G, the sum

∞∑
k=1

fk(x)

converges absolutely for almost every x. Hence there is a measurable function f such

that this sum converges a.e. to f . By construction, |f | ≤ G and thus f ∈ L2(µ).

Moreover, for all n we have ∣∣∣∣∣f −
n∑
k=1

fk

∣∣∣∣∣
2

≤ (2G)2.

Equation (
eqn:G2integrable
20) says that G2 is integrable, so we can apply the Dominated Convergence

Theorem to obtain

lim
n→∞

∥∥∥∥∥f −
n∑
k=1

fk

∥∥∥∥∥
2

= lim
n→∞

∫
X

∣∣∣∣∣f −
n∑
k=1

fk

∣∣∣∣∣
2

dµ = 0.

�

23.6. Best approximation. The results of the preceding subsection used only the inner

product, but to go further we will need to invoke completeness. From now on, then, we

work only with Hilbert spaces. We begin with a fundamental approximation theorem.

Recall that if X is a vector space over K, a subset K ⊆ X is called convex if whenever

a, b ∈ K and 0 ≤ t ≤ 1, we have (1 − t)a + tb ∈ K as well. (Geometrically, this means

that when a, b lie in K, so does the line segment joining them.)
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Theorem 23.13. Suppose H is a Hilbert space. If K ⊆ H is a closed, convex, nonempty

set, and h ∈ H, then there exists a unique vector k0 ∈ K such that

‖h− k0‖ = dist(h,K) := inf{‖h− k‖ : k ∈ K}.

Proof. Let d = dist(h,K) = infk∈K ‖h−k‖. First observe, if x, y ∈ K, then, by convexity,

so is v = x+y
2

and in particular, ‖h− v‖2 ≥ d2. Hence, by the parallelogram law,∥∥∥∥x− y2

∥∥∥∥2

=
1

2

(
‖x− h‖2 + ‖y − h‖2

)
−
∥∥∥∥x+ y

2
− h
∥∥∥∥2

≤1

2

(
‖x− h‖2 + ‖y − h‖2

)
− d2.

(21) eqn:convex_para_law

By assumption, there exists a sequence (kn) in K so that (‖kn − h‖) converges to d.

Given ε > 0 choose N such that for all n ≥ N , ‖kn − h‖2 < d2 + 1
4
ε2. By (

eqn:convex_para_law
21), if

m,n ≥ N then ∥∥∥∥km − kn2

∥∥∥∥2

<
1

2
(2d2 +

1

2
ε2)− d2 =

1

4
ε2.

Consequently ‖km − kn‖ < ε for m,n ≥ N and (kn) is a Cauchy sequence. Since H is

complete, (kn) converges to a limit k0, and since K is closed, k0 ∈ K. Since (kn − h)

converges to (k0 − h) and ‖kn − h‖ converges to d it follows, by continuity of the norm,

that ‖k0 − h‖ = d.

It remains to show that k0 is the unique element of K with this property. If k′ ∈ K

and ‖k′ − h‖ = d, then another application of v = (k0 + k′)/2 belongs to K, and

‖v − h‖ ≥ d. By the parallelogram law again, equation (
eqn:convex_para_law
21) gives

0 ≤
∥∥∥∥k0 − k′

2

∥∥∥∥2

≤ 1

2

(
‖k0 − h‖2 + ‖k′ − h‖2

)
− d2 =

1

2
(d2 + d2)− d2 = 0.

Hence k0 = k′. �
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The most important application of the preceding approximation theorem is in the

case when K = M is a closed subspace of the Hilbert space H. (Note that a subspace is

always convex). What is significant is that in the case of a subspace, the minimizer k0 has

an elegant geometric description, namely, it is obtained by “dropping a perpendicular”

from h to M . This is the content of the next theorem.

Since we will use the notation often, let us write M ≤ H to mean that M is a closed

subspace of H.

thm:dropaperp Theorem 23.14. Suppose H is a Hilbert space, M ≤ H, and h ∈ H. If f0 is the unique

element of M such that ‖h−f0‖ = dist(h,M), then (h−f0) ⊥M . Conversely, if f0 ∈M

and (h− f0) ⊥M , then ‖h− f0‖ = dist(h,M).

Proof. Let f0 ∈ M with ‖h − f0‖ = dist(h,M) be given. Given f ∈ M , for t ∈ R, let

λ = t〈h− f0, f〉. Since f0 + λf ∈M ,

0 ≤ ‖h− (f0 + λf)‖2 − ‖h− f0‖2

=‖(h− f0) + λf‖2 − ‖h− f0‖2

=2<λ 〈h− f0, f〉+ |λ|2‖f‖2

=[2t+ t2] ‖f‖2 |〈h− f0, f〉|2

for all t. Thus 〈h− f0, f〉 = 0.
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Conversely, suppose f0 ∈ M and (h − f0) ⊥ M . In particular, we have (h − f0) ⊥

(f0 − f) for all f ∈M . Therefore, for all f ∈M

‖h− f‖2 = ‖(h− f0) + (f0 − f)‖2 (22)

= ‖h− f0‖2 + ‖f0 − f‖2 (why?) (23)

≥ ‖h− f0‖2. (24)

Thus ‖h− f0‖ = dist(h,M). �

cor:m_perp_perp Corollary 23.15. If M ≤ H, then (M⊥)⊥ = M .

Proof. By Lemma
lem:perpbasics
23.7, M ⊂ (M⊥)⊥. Now suppose that x ∈ (M⊥)⊥. By Theorem

thm:dropaperp
23.14

applied to x and M , there exists m ∈ M such that x −m ∈ M⊥. On the other hand,

both x and m are in (M⊥)⊥ and thus by Lemma
lem:perpbasics
23.7, x−m ∈ (M⊥)⊥. Thus x−m = 0

by Lemma
lem:perpbasics
23.7, and x ∈M . �

If E is a subset of the Banach space X, and E is the collection of all closed subspaces

N of X such that E ⊂ N , then

M = ∩N∈EN

is the smallest closed subspace containing E.

cor:e_perp_perp Corollary 23.16. If E is a subset of H, then (E⊥)⊥ is equal to the smallest closed

subspace of H containing E.
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Proof. The proof uses Lemma
lem:perpbasics
23.7 freely. Evidently E ⊂ (E⊥)⊥. Further (E⊥)⊥ is a

closed subspace. If M is a closed subspace containing E, then E⊥ ⊃ M⊥ and hence

(E⊥)⊥ ⊂ (M⊥)⊥ = M by Corollary
cor:m_perp_perp
23.15. �

Corollary 23.17. A vector subspace E of a Hilbert space H is dense in H if and only

if E⊥ = (0).

Lemma 23.18. Suppose M,N ≤ H. If M and N are orthogonal, then M+N is closed.

Given subspaces M,N ≤ H of a Hilbert space H, the notation M ⊕ N is used for

M +N in the case M and N are closed subspaces and M ⊥ N . Hence, M ⊕N indicates

that M,N are orthogonal closed subspaces of H.

Proof. It suffices to prove that M +N is complete. Accordingly suppose (mk + nk) is a

Cauchy sequence from M +N . From orthogonality, for k, ` ∈ N,

‖mk −m`‖2 + ‖nk − n`‖2 = ‖(mk + nk)− (m` + n`)‖2

and hence (mk) and (nk) are both Cauchy. Since H is complete and M,N are closed,

M and N are each complete. Thus (mk) converges to some m ∈ M and (nk) converges

to some n ∈ N and thus (mk + nk) converges to m+ n ∈M +N . �

cor:MplusMperp Corollary 23.19. If M ≤ H, then H = M ⊕M⊥.

Proof. Given x ∈ H, there exists m ∈ M such that x − m ∈ M⊥ by Theorem
thm:dropaperp
23.14.

Hence x = m+ (x−m) ∈M ⊕M⊥. �
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sec:riesz

23.7. The Riesz Representation Theorem. In this section we investigate the dual

H∗ of a Hilbert space H. One way to construct bounded linear functionals on Hilbert

space is as follows. Given a vector g ∈ H define,

Lg(h) = 〈h, g〉.

Indeed, linearity of L is just the linearity of the inner product in the first entry, and the

boundedness of L follows from the Cauchy-Schwarz inequality,

|Lg(h)| = |〈h, g〉| ≤ ‖g‖‖h‖.

So ‖Lg‖ ≤ ‖g‖, but in fact it is easy to see that ‖Lg‖ = ‖g‖; just apply Lg to the unit

vector g/‖g‖. Hence, L : H → H∗ defined by g 7→ Lg is a conjugate linear isometry

(thus linear in the case of real scalars).

In fact, it is clear from linear algebra that every linear functional on Kn takes the

form Lg. More generally, every bounded linear functional on a Hilbert space has the form

just described.

thm:riesz_rep Theorem 23.20 (The Riesz RepresentationTheorem). If H is a Hilbert space and λ :

H → K is a bounded linear functional, then there exists a unique vector g ∈ H such that

λ = Lg. Thus the conjugate linear mapping L is isometric and onto.

Proof. It has already been established that L is isometric and in particular one-one.

Thus it only remains to show L is onto. Accordingly, let λ ∈ H∗ be given. If λ = 0, then
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λ = L0. So, assume λ 6= 0. Since λ is continuous by Proposition
prop:bdd-iff-cns
20.7, kerλ = λ−1({0})

is a proper, closed subspace of H. Thus, by Theorem
thm:dropaperp
23.14 (or Corollary

cor:MplusMperp
23.19) there

exists a nonzero vector f ∈ (kerλ)⊥ and by rescaling we may assume λ(f) = 1.

Given h ∈ H, observe

λ(h− λ(h)f) = λ(h)− λ(h)λ(f) = 0.

Thus h− λ(h)f ∈ kerλ and consequently,

0 = 〈h− λ(h)f, f〉

= 〈h, g〉 − λ(h)〈f, f〉.

Thus λ = Lg, where g = f
‖f‖2 and the proof is complete. �

23.8. Duality for Hilbert space. In the case K = R the Riesz representation theorem

identifies H∗ with H. In the case K = C, the mapping sending λ ∈ H∗ to the vector

h0 is conjugate linear and thus H∗ is not exactly H (under this map). However, it

is customary when working in complex Hilbert space not to make this distinction. In

particular, it is a simple matter to identify the adjoint of a bounded operator T : H → H

as an operator T ∗ : H → H. (See Theorem
thm:adjointmap
21.14.) Namely, for h ∈ H, define T ∗h as

follows. Observe that the mapping λ : H → C defined by λ(f) = 〈Tf, h〉 is (linear and)

continuous. Hence, there is a vector T ∗h such that

〈Tf, h〉 = λ(f) = 〈f, T ∗h〉.
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Conversely, if S : H → H is linear and

〈Tf, h〉 = 〈f, Sh〉

for all f, h ∈ H, then S = T ∗. In particular T ∗ is completely determined by 〈Tf, h〉 =

〈f, T ∗h〉 for all f, h ∈ H. Further properties of the adjoints on Hilbert space appear in

Problem
prob:Hilbyadjoint
23.2.

A bounded operator T on a Hilbert space H is self-adjoint or hermitian if T ∗ = T .

The proof of the following lemma uses the convenient fact that if T is abounded operator

on H and if 〈Th, g〉 = 0 for all h, g ∈ H, then T = 0.

prop:polarizeT Proposition 23.21. Suppose T is a bounded self-adjoint operator on a Hilbert space H.

If 〈Th, h〉 = 0 for all h ∈ H, then T = 0.

Proof. The proof involves a polarization argument. Given h, g ∈ H, we have

2<〈Th, g〉 = 〈T (h+ g), h+ g〉 = 0.

Similarly,

2i=〈Th, g〉 = 〈T (h− ig), h− ig〉 = 0.

Hence 〈Th, g〉 = 0 and thus T = 0. �

Returning to Theorem
thm:dropaperp
23.14, if M ≤ H and h ∈ H, there exists a unique f0 ∈ M

such that (h − f0) ⊥ M . We thus obtain a well-defined function P : H → H (or, we

could write P : H →M) defined by

Ph = f0. (25) projn_def
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That is, Ph is characterized by Ph ∈ M and (h − Ph) ⊥ M . If the space M needs to

be emphasized we will write PM for P .

A bounded operator Q on a Hilbert space H (meaning Q : H → H is linear and

bounded) is a projection if Q∗ = Q and Q2 = Q. The following Theorem says if Q is a

projection, then Q = PN , where N is the range of Q; that is, Q is uniquely determined

by its range.

Theorem 23.22. Suppose M ≤ H. The mapping P = PM is a projection with range

M . Moreover, if Q is a projection with range N , then

(i) if h ∈ N , then Qh = h;

(ii) ‖Qh‖ ≤ ‖h‖ for all h ∈ H;

(iii) N ≤ H;

(iv) N⊥ is the kernel of Q;

(v) I −Q is a projection with range N⊥; and

(vi) Q = PN .

The mapping P is called the orthogonal projection of H on M and, for h ∈ H, the

vector Ph is the orthogonal projection of h onto M .

Proof. In view of Corollary
cor:MplusMperp
23.19, M + M⊥ = H and M ∩M⊥ = (0) from which it

follows readily that P is a linear map.
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Evidently P maps into M and if f ∈ M, then Pf = f and hence P maps onto M

and PPf = Pf (and so P 2 = P ). Note that Ph = 0 if and only if h ∈ M⊥. Thus

ker(P ) = M⊥. Further, PM⊥ = I − P . In particular, the ranges of P and I − P are

orthogonal.

If h ∈ H, then h = Ph+ (h−Ph). But (h−Ph) ∈M⊥ and Ph ∈M , and thus, by

the Pythagorean Theorem

‖h‖2 = ‖h− Ph‖2 + ‖Ph‖2.

Hence ‖Ph‖ ≤ ‖h‖. In particular, P is a bounded operator on H. (See also Problem

prob:complement-v-bdd
22.10.)

Given g, f ∈ H, using orthogonality of the ranges of P and I − P ,

〈Pf, Pg〉 =〈Pf, (I − P )g + Pg〉

=〈Pf, g〉

On the other hand, by the same reasoning

〈Pf, Pg〉 =〈Pf + (I − P )f, Pg〉

=〈f, Pg〉

Hence P ∗ = P and all the claims about P have now been proved. It is also immediate

that I − P is the projection onto M⊥.

Turning to Q, suppose Q is a projection and let N denote the range of Q. Since

Q2 = Q it follows that Qh = h for h ∈ N (the range of Q).

An easy computation shows that Q(I −Q) = 0. Thus if h, f ∈ H, then

〈Qh, (I −Q)f〉 = 〈h,Q(I −Q)f〉 = 0.
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Choosing f = h, it follows that h = Qh+ (I −Q)h is an orthogonal decomposition and

hence ‖Qh‖ ≤ ‖h‖.

If (hn) is a sequence from the range of Q which converges to h ∈ H, then, by

continuity of Q, the sequence (hn = Qhn) converges to Qh and thus h = Qh so that the

range of Q is closed.

Next, f ∈ N⊥ if and only if

0 = 〈Qh, f〉 = 〈h,Qf〉

for every h ∈ H; if and only if Qf = 0. Thus N⊥ = ker(Q).

Finally, an easy argument shows I −Q is a projection too. In particular, f is in the

range of I − Q if and only if (I − Q)f = f . On the other hand (I − Q)f = f if and

only if Qf = 0. Thus the range of I −Q is the kernel of Q. Finally, given h ∈ H, since

h−Qh = (I −Q)h ∈ ker(Q) = N⊥, it follows that Qh = PNh.

�

23.9. Orthonormal Sets and Bases. Recall, a subset E of a Hilbert space H is

orthonormal if ‖e‖ = 1 for all e ∈ E, and if e, f ∈ E and e 6= f , then e ⊥ f .

Definition 23.23. An orthonormal set is maximal if it is not contained in any larger

orthonormal set. A maximal orthonormal set is called an (orthonormal) basis for H. /
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Proposition 23.24. An orthonormal set E is maximal if and only if the only vector

orthogonal to E is the zero vector. Equivalently, an orthonormal set E is maximal if

and only if the span of E is dense in H.

To prove the proposition use H = E ⊕ E⊥.

Remark 23.25. It must be stressed that a basis in the above sense need not be a basis

in the sense of linear algebra; that is, a basis for H as a vector space. In particular,

it is always true that an orthonormal set is linearly independent (Exercise: prove this

statement), but in general an orthonormal basis need not span H. In fact, if E is an

infinite orthonormal subset of H, then E does not span H. See Problem
prob:Hamel-basis
22.6. �

Example 23.26. Here are some common examples of orthonormal bases.

(a) Of course the standard basis {e1, . . . , en} is an orthonormal basis of Kn.

(b) In much the same way we get a orthonormal basis of `2(N); for each n define

en(k) =

{
1 if k = n

0 if k 6= n

It is straightforward to check that the set E = {en}∞n=1 is orthonormal. In fact, it is

a basis. To see this, notice that if h : N→ K belongs to `2(N), then 〈h, en〉 = h(n),

and hence if h ⊥ E, we have h(n) = 0 for all n, so h = 0.
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(c) Let H = L2[0, 1]. Consider for n ∈ Z the functions en(x) = e2iπnx. An easy exercise

shows this set is orthonormal. Though not obvious, it is in fact a basis. (See Problem

prob:basisL201
23.7.)

4

23.10. Basis expansions. Our ultimate goal in this section is to show that vectors in

Hilbert space admit expansions as (possibly infinite) linear combinations of basis vectors.

thm:fd_proj Theorem 23.27. Let {e1, . . . en} be an orthonormal set in H, and let M = span{e1, . . . en}.

The orthogonal projection P = PM onto M is given by, for h ∈ H,

Ph =
n∑
j=1

〈h, ej〉ej. (26) eqn:fd_proj

Proof. Given h ∈ H, let g =
∑n

j=1〈h, ej〉ej. Since g ∈M, it suffices to show (h−g) ⊥M .

For 1 ≤ m ≤ n,

〈h− g, em〉 =〈h, em〉 −

〈
n∑
j=1

〈h, ej〉ej, em

〉

= 〈h, em〉 −
n∑
j=1

〈h, ej〉〈ej, em〉

= 〈h, em〉 − 〈h, em〉 = 0.

It follows that h− g is orthogonal to {e1, . . . , en} and hence to M . �

Theorem 23.28 (Gram-Schmidt process). If (fn)∞n=1 is a linearly independent sequence

in H, then there exists an orthonormal sequence (en)∞n=1 such that for each n, span{f1, . . . fn} =

span{e1, . . . en}.
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Proof. Put e1 = f1/‖f1‖. Assuming e1, . . . en have been constructed satisfying the condi-

tions of the theorem, let gn+1 =
∑n

j=1〈fn+1, ej〉ej, the orthogonal projection of fn+1 onto

Mn = span{e1, . . . , en}. Thus gn+1 is orthogonal to Mn and not 0. Let en+1 = gn
‖gn+1‖ . �

FIX It follows from the Gram-Schmidt process that H is finite dimensional as a

Hilbert space if and only ifH is finite dimensional as a vector space (and these dimensions

agree).

Theorem 23.29 (Bessel’s inequality). If {e1, e2, . . . } is an orthonormal sequence in H,

then for all h ∈ H
∞∑
n=1

|〈h, en〉|2 ≤ ‖h‖2. (27) eqn:bessel

Proof. For N ∈ N+, let PN denote the projection onto MN = span({e1, . . . , eN}). Given

h ∈ H, Theorem
thm:fd_proj
23.27 and orthogonality gives,

‖h‖2 = ‖PNh+ (I − PN)h‖2

=‖Pnh‖2 + ‖(I − PN)h‖2

≥‖PNh‖2

=
N∑
j=1

|〈h, ej〉|2.

Since the inequality holds for all N , the proof is complete. �

cor:countable_support Corollary 23.30. If E ⊂ H is an orthonormal set and h ∈ H, then 〈h, e〉 is nonzero

for at most countably many e ∈ E.
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Proof. Fix h ∈ H and a positive integer N , and define

EN = {e ∈ E : |〈h, e〉| ≥ 1

N
}.

We claim that EN is finite. If not, then it contains a countably infinite subset {e1, e2, . . . }.

Applying Bessel’s inequality to h and this subset, we get

‖h‖2 ≥
∞∑
n=1

|〈h, en〉|2 ≥
∞∑
n=1

1

N
= +∞,

a contradiction. Hence,

{e ∈ E : 〈h, e〉 6= 0} =
∞⋃
N=1

EN

is a countable union of finite sets, and therefore countable. �

thm:general_bessel Corollary 23.31. Suppose E ⊂ H is an orthonormal set and let F denote the collection

of finite subsets of E. If h ∈ H, then

sup{
∑
e∈F

|〈h, e〉|2 : F ∈ F} ≤ ‖h‖2. (28) eqn:general_bessel

At this point we pause to discuss convergence of infinite series in Hilbert space.

We have already encountered ordinary convergence and absolute convergence in our

discussion of completeness: recall that the series
∑∞

n=1 hn converges if limN→∞
∑N

n=1 hn

exists; its limit h is called the sum of the series. The series converges absolutely if∑∞
n=1 ‖hn‖ <∞ and absolute convergence implies convergence.

The series
∑∞

n=1 hn is unconditionally convergent if there exists an h ∈ H such that

for each bijection ϕ : N → N the series
∑∞

n=1 hϕ(n) converges to h. (In other words,

every reordering of the series converges, and to the same sum.) Of course absolute
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convergence implies unconditional convergence. For ordinary scalar series, or in a finite

dimensional Hilbert space such as Kn, unconditional convergence implies absolute con-

vergence; however in infinite dimensional Hilbert space unconditional convergence need

not imply absolute convergence as the example following Theorem
thm:ucc
23.32 shows.

thm:ucc Theorem 23.32. Suppose E = {e1, e2, . . . } ⊂ H is a countable orthonormal set and

(an) is a sequence of complex numbers. The following are equivalent.

it:converge (i) the series
∑∞

j=1 ajej converges;

it:squares (ii)
∑∞

j=1 |aj|2 converges; and

it:uncond (iii) the series
∑∞

j=1 ajej converges unconditionally.

Further, if h ∈ H, then the series

∞∑
j=1

〈h, ej〉ej (29) eqn:ucc

is unconditionally convergent and, letting g denote the (unconditional) sum,

〈g, ej〉 = 〈h, ej〉.

Suppose {e1, e2, . . . } is a countable orthonormal set in a Hilbert space H. The series

∞∑
j=1

1

j
ej

is Cauchy (verify this as an exercise) and hence converges to some h ∈ H. From Theorem

thm:ucc
23.32 it follows that 〈h, ej〉 = 1

j
and the series above converges unconditionally to h.

On the other hand, this series does not converge absolutely and hence unconditional

convergence does not imply absolute convergence.
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Proof. Let sn denote the partial sums of the series
∑∞

j=1 aj ej,

sn =
n∑
j=1

aj ej.

Since H is complete, the series
∑∞

j=1 ajej converges if and only if for each ε > 0 there is

an N so that for all m ≥ n ≥ N ,

‖sm − sn‖2 =
m∑

j=n+1

|aj|2 < ε (30) eq:sjg

if and only if the series
∑m

j=N+1 |aj|2 < ε converges. Hence items (
it:converge
i) and (

it:squares
ii) are equiva-

lent.

Now suppose
∑∞

j=1 |aj|2 converges and let ϕ : N → N. For numerical series, ab-

solute convergence implies conditional convergence. Hence
∑∞

j=1 |aϕ(j)|2 converges and

therefore, using the equivalence between item (
it:squares
ii) implies (

it:converge
i) it follows that the series

∞∑
k=1

aϕ(k) eϕ(k)

converges to some g′, the limit of the partial sums

s′n =
n∑
j=1

aϕ(j) eϕ(j).

It remains to show g′ = g.

Given ε > 0, choose N so that (
eq:sjg
30) holds. Now choose M ≥ N so that

{1, 2, . . . N} ⊆ {ϕ(1), ϕ(2), . . . ϕ(M)}.

For n ≥M , let Gn be the symmetric difference of the sets {1, . . . n} and {ϕ(1), . . . ϕ(n)}

(that is, their union minus their intersection). Since n ≥M , the set Gn ⊂ {N + 1, N +
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2, . . . }. It follows that

‖sn − s′n‖2 = ‖
∑
k∈Gn

±akek‖2 (31)

=
∑
k∈Gn

|ak|2 (32)

≤
∞∑
N+1

|aj|2 (33)

< ε. (34)

Thus g′ = g. Hence item (
it:squares
ii) implies item (

it:uncond
iii) and the proof of the first part of the

theorem is complete.

For h ∈ H Bessel’s inequality implies the convergence of
∑
|〈h, ej〉|2 and thus, by

what has already been proved, the series
∑
〈h, ej〉 ej converges unconditionally to some

g ∈ H. To complete the proof, given ε > 0, choose N so that if n ≥ N , then

‖g −
n∑
j=1

〈h, ej〉ej‖ < ε.

It follows that, by the Cauchy-Schwarz inequality, for m ≤ n,

|〈g −
n∑
j=1

〈h, ej〉ej, em〉|2 ≤ ‖g −
n∑
j=1

〈h, ej〉ej‖ ‖em‖ < ε.

On the other hand,

〈g −
n∑
j=1

〈h, ej〉ej, em〉 = 〈g, em〉 − 〈h, em〉

and the desired conclusion follows. �

There is another notion of convergence in Hilbert space. Let I be an index set and

let F denote the collection of finite subsets of I. Given {hi : i ∈ I}, a collection of
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elements of H, the series

∑
i∈I

hi

converges as a net if there exists h ∈ H such that for every ε > 0 there exists an F ∈ F

such that for every F ⊂ G ∈ F ,

‖
∑
i∈G

hi − h‖ < ε.

prop:net Proposition 23.33. If E is an orthonormal subset of a Hilbert space H and h ∈ H,

then

∑
e∈E

〈h, e〉e

converges (as a net). Moreover, if g is the limit (as a net), then, for each e ∈ E,

〈g, e〉 = 〈h, e〉.

If (hj) is a sequence from H and

∑
j∈N+

hj

converges (as a net) to some h ∈ H, then

∞∑
j=1

hj

converges unconditionally to h.

Proof. Let E0 = {e ∈ E : 〈h, e〉 6= 0}. From Corollary
cor:countable_support
23.30, E0 is at most countable.

Suppose E0 is countable and choose an enumeration, E0 = {e1, e2, . . . }. By Theorem



D
RA
FT

MAA6617 COURSE NOTES SPRING 2018 85

thm:ucc
23.32, the series

∞∑
j=1

〈h, ej〉ej

converges unconditionally to some g ∈ H and moreover 〈g, ej〉 = 〈h, ej〉 for all j. Given

ε > 0, there is an N so that if n ≥ N , then

|g −
n∑
j=1

〈h, ej〉ej| < ε

and, from Bessel’s inequality,

∞∑
j=N

|〈g, ej〉|2 < ε2.

Let F = {e1, . . . , eN}. If G ⊂ E is finite and F ⊂ G, then

‖g −
∑
e∈G

〈g, e〉‖ ≤‖g −
N∑
j=1

〈g, ej〉‖+ ‖
∑
e∈G\F

〈g, e〉e‖

≤ε+ [
∞∑
j=N

|〈g, ej〉|2]
1
2

≤2ε.

Hence
∑

e∈E〈h, e〉 converges as a net to g. Further, by construction, 〈g, e〉 = 〈h, e〉 for

e ∈ E0. On the other hand, if e /∈ E0, then, for each n,

〈
n∑
j=1

〈h, ej〉ej, e〉 = 0,

and thus 〈g, e〉 = 0 = 〈h, e〉.

The proof of the last part of the proposition is left as a (challenging) exercise. See

Problem
prob:netvuncond
23.14. �

thm:parseval Theorem 23.34. If E ⊂ H is an orthonormal set, then the following are equivalent:

(a) E is a (orthonormal) basis for H;
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it:basis (b) h =
∑

e∈E〈h, e〉e for each h ∈ H;

(c) 〈g, h〉 =
∑

e∈E〈g, e〉〈e, h〉 for each g, h ∈ H; and

(d) ‖h‖2 =
∑

e∈E |〈h, e〉|2 for each h ∈ H.

Proof. Suppose E is an orthonormal set in H and h ∈ H. In this case,

∑
e∈E

〈h, e〉e

converges (as a net) to some g ∈ H and moreover 〈g, e〉 = 〈h, e〉 for all e ∈ E. Suppose

g 6= h and let f = g−h
‖g−h‖ so that f is a unit vector. If e ∈ E, then

〈f, e〉 =
1

‖g − h‖
〈g − h, e〉 = 0,

and thus E is not maximal. Hence (a) implies (b).

Now suppose (b) holds and let h, g ∈ H be given. Given ε, choose a finite subset F

of E such that if F ⊂ G ⊂ E, then

‖h−
∑
e∈G

〈h, e〉e‖, ‖g −
∑
e∈G

〈g, e〉e‖ <
√
ε

and observe, using the Cauchy-Schwarz inequality,

ε >
∣∣〈h−∑

e∈G

〈h, e〉e, g −
∑
f∈G

〈g, e〉e
∣∣

=
∣∣〈h, g〉 −∑

e∈G

〈h, e〉 〈e, g〉
∣∣.

Hence (b) implies (c).

Item (d) follows from (c) by choosing g = h. Finally, suppose that (a) does not

hold. In that case there exists a unit vector h ∈ H such that h is orthogonal to E. In
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particular, ∑
e∈E

|〈h, e〉| = 0

and (d) does not hold. �

Theorem 23.35. Every Hilbert space H 6= (0) has an orthonormal basis.

Proof. The proof is essentially the same as the Zorn’s lemma proof that every vector

space has a basis. Let H be a Hilbert space and E the collection of orthonormal subsets

of H, partially ordered by inclusion. Since H 6= (0), the collection E is not empty. If

(Eα) is an ascending chain in E , then it is straightforward to verify that ∪αEα is an

orthonormal set, and is an upper bound for (Eα). Thus by Zorn’s lemma, E has a

maximal element. This maximal element is then a basis (maximal orthonormal set). �

Remark 23.36. If H has a finite orthonormal basis E = {e1, . . . , en}, then by Theorem

thm:parseval
23.34(

it:basis
b), E spans (in the sense of linear algebra) and is therefore a vector space (Hamel)

basis for H. Hence H has dimension n as a vector space and further every orthonormal

basis of H has exactly n elements.

On the other hand, if H has an infinite orthonormal basis E, then it contains an

infinite linearly independent set (the basis E) and so has infinite dimension as a vector

space. �

Theorem 23.37. Any two bases of a Hilbert space H have the same cardinality.

In the proof we let |S| denote the cardinality of the set S.
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Proof. Suppose E,F are orthonormal bases for H. If E is finite, then E is a basis in

the vector space sense and thus H is finite dimensional as a vector space. Since F is

orthonormal, it is linearly independent and hence |F | ≤ |E|. Thus F is also a vector

space basis for H and so |F | = |E|. By symmetry, either both E and F are finite and

have the same cardinality or both are infinite. Accordingly suppose both are infinite.

Fix e ∈ E and consider the set

Fe = {f ∈ F | 〈f, e〉 6= 0}.

Since F is orthonormal, each Fe is at most countable by Corollary
cor:countable_support
23.30, and since E is

a basis, each f ∈ F belongs to at least one Fe. Thus
⋃
e∈E Fe = F , and

|F | =

∣∣∣∣∣⋃
e∈E

Fe

∣∣∣∣∣ ≤ |E| · ℵ0 = |E|

where the last equality holds since E is infinite.

By symmetry, |F | ≤ |E| and the proof is complete. �

In light of this theorem, we make the following definition.

Definition 23.38. The (orthogonal) dimension of a Hilbert space H is the cardinality

of any orthonormal basis, and is denoted dimH. If dimH is finite or countable, H is

separable or separable Hilbert space. /

23.11. Weak convergence. In addition to the norm topology, Hilbert spaces carry

another topology called the weak topology. In these notes we will stick to the seperable

case and just study weakly convergent sequences.
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Definition 23.39. Let H be a seperable Hilbert space. A sequence (hn) in H converges

weakly to h ∈ H if for all g ∈ H,

〈hn, g〉 → 〈h, g〉.

/

The Cauchy-Schwarz inequality implies if (hn) converges to h in norm, then (hn)

converges weakly to h. However, when H is infinite-dimensional, the converse can fail.

For instance, let {en}∞n=1 be an orthonormal basis for H. Then (en) converges to 0

weakly. (The proof is an exercise, see Problem
prob:hilbert-weak
23.9). On the other hand, the sequence

(en) is not norm convergent, since it is not Cauchy. In this section weak convergence is

characterized as “bounded coordinate-wise convergence” and it is shown that the unit

ball of a separable Hilbert space is weakly sequentially compact.

prop:weakconverge Proposition 23.40. Let H be a Hilbert space with orthonormal basis {ej}∞j=1. A se-

quence (hn) in H is weakly convergent if and only if

i) supn ‖hn‖ <∞, and

ii) limn〈hn, ej〉 exists for each j.

Proof. Suppose (hn) converges to h weakly. For each n

Ln(g) = 〈g, hn〉

is a bounded linear functional on H. Since, for fixed g, the sequence |Ln(g)| converges, it

is bounded. Thus, the family of linear functionals (Ln) is pointwise bounded and hence,
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by the Principle of Uniform boundedness, sup ‖hn‖ = sup ‖Ln‖ <∞, showing (i) holds.

Item (ii) is immediate from the definition of weak convergence.

Conversely, suppose (i) and (ii) hold, let M = sup ‖hn‖. Define

ĥj = lim〈hn, ej〉.

We will show that
∑

j |ĥj|2 ≤ M (so that the series
∑
ĥjej is norm convergent in H);

we then define h to be the sum of this series and show that hn → h weakly.

For positive integers J and all n,

J∑
j=1

|〈hn, ej〉|2 ≤ ‖hn‖2 ≤M2

by Bessel’s inequality. Thus,

J∑
j=1

|ĥj|2 =
J∑
j=1

lim
n
|〈hn, ej〉|2 = lim

n

J∑
j=1

|〈hn, ej〉|2 ≤M2.

Thus
∑

j |ĥj|2 ≤M2 and therefore the series
∑

j ĥjej is norm convergent to some h ∈ H

such that 〈h, ej〉 = ĥj by Theorem
thm:ucc
23.32. By Theorem

thm:parseval
23.34, ‖h‖ ≤M .

Now we prove that (hn) converges to h weakly. Fix g ∈ H and let ε > 0 be given.

Since g =
∑

j〈g, ej〉ej (where the series is norm convergent) there exists an positive

integer J large enough so that∥∥∥∥∥g −
J∑
j=1

〈g, ej〉ej

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

j=J+1

〈g, ej〉ej

∥∥∥∥∥ < ε.

Let g0 =
∑J

j=1〈g, ej〉ej, write g = g0 + g1, observe ‖g1‖ < ε and estimate,

|〈hn − h, g〉| ≤ |〈hn − h, g0〉|+ |〈hn − h, g1〉|.
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By (ii), the first term on the right hand side goes to 0 with n, since g0 is a finite sum of

ej’s. By Cauchy-Schwarz, the second term is bounded by 2Mε. As ε was arbitrary, we

see that the left-hand side goes to 0 with n. �

It turns out, if (hn) converges to h weakly, then ‖h‖ ≤ lim inf ‖hn‖ and further, still

assuming (hn) converges weakly to h, ‖h‖ = lim ‖hn‖ if and only if (hn) converges to h

in norm. See Problem
prob:hilbert-weak
23.9.

thm:weak-compactness Theorem 23.41 (Weak compactness of the unit ball in Hilbert space). If (hn) is a bounded

sequence in a separable Hilbert space H, then (hn) has a weakly convergent subsequence.

Theorem
thm:weak-compactness
23.41 holds without the separability hypothesis, but the proof is much

simpler with the hypothesis.

Proof. Using the previous proposition, it suffices to fix an orthonromal basis (ej) and

produce a subsequence (hnk)k such that 〈hnk , ej〉 converges for each j. This is a standard

“diagonalization” argument, and the details are left as an exercise (Problem
prob:weak-compactness
23.11) �

23.12. Problems.

Problem 23.1. Prove the complex form of the polarization identity: if H is a Hilbert

space over C, then for all g, h ∈ H

〈g, h〉 =
1

4

(
‖g + h‖2 − ‖g − h‖2 + i‖g + ih‖2 − i‖g − ih‖2

)
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prob:Hilbyadjoint Problem 23.2. (Adjoint operators) Let H be a Hilbert space and T : H → H a

bounded linear operator.

a) Prove there is a unique bounded operator T ∗ : H → H satisfying 〈Tg, h〉 =

〈g, T ∗h〉 for all g, h ∈ H, and ‖T ∗‖ = ‖T‖.

b) Prove, if S, T ∈ B(H), then (aS + T )∗ = aS∗ + T ∗ for all a ∈ K, and that

T ∗∗ = T .

c) Prove ‖T ∗T‖ = ‖T‖2.

d) Prove kerT is a closed subspace of H, (ranT ) = (kerT ∗)⊥ and kerT ∗ = (ranT )⊥.

prob:hilby-isometries Problem 23.3. Let H,K be Hilbert spaces. A linear transformation T : H → K is

called isometric if ‖Th‖ = ‖h‖ for all h ∈ H, and unitary if it is a surjective isometry.

Prove the following:

a) T is an isometry if and only if 〈Tg, Th〉 = 〈g, h〉 for all g, h ∈ H, if and only if

T ∗T = I (here I denotes the identity operator on H).

b) T is unitary if and only if T is invertible and T−1 = T ∗, if and only if T ∗T =

TT ∗ = I.

c) Prove, if E ⊂ H is an orthonormal set and T is an isometry, then T (E) is an

orthonormal set in K.

d) Prove, if H is finite-dimensional, then every isometry T : H → H is unitary.

e) Consider the shift operator S ∈ B(`2(N)) defined by

S(a0, a1, a2, . . . ) = (0, a0, a1, . . . ) (35) eqn:shift-def
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Prove S is an isometry, but not unitary. Compute S∗ and SS∗.

Problem 23.4. For any set J , let `2(J) denote the set of all functions f : J → K such

that
∑

j∈J |f(j)|2 <∞. Then `2(J) is a Hilbert space.

a) Prove `2(I) is isometrically isomorphic to `2(J) if and only if I and J have the

same cardinality. (Hint: use Problem
prob:hilby-isometries
23.3(c).)

b) Prove, if H is any Hilbert space, then H is isometrically isomorphic to `2(J) for

some set J .

prob:simple-dense-in-L2 Problem 23.5. Let (X,M , µ) be a σ-finite measure space. Prove the simple functions

that belong to L2(µ) are dense in L2(µ).

Problem 23.6. (The Fourier basis) Prove the set E = {en(t) := e2πint|n ∈ Z} is an

orthonormal basis for L2[0, 1]. (Hint: use the Stone-Weierstrass theorem to prove that

the set of trigonometric polynomials P = {
∑N

n=−M cne
2πint} is uniformly dense in the

space of continuous functions f on [0, 1] that satisfy f(0) = f(1). Then show that this

space of continuous functions is dense in L2[0, 1]. Finally show that if fn is a sequence

in L2[0, 1] and fn → f uniformly, then also fn → f in the L2 norm.)

prob:basisL201 Problem 23.7. Let (gn)n∈N be an orthonormal basis for L2[0, 1], and extend each

function to R by declaring it to be 0 off of [0, 1]. Prove the functions hmn(x) :=

1[m,m+1](x)gn(x − m), n ∈ N,m ∈ Z form an orthonormal basis for L2(R). (Thus

L2(R) is separable.)



D
RA
FT

94 MAA6617 COURSE NOTES SPRING 2018

Problem 23.8. Let (X,M , µ), (Y,N , ν) are σ-finite measure spaces, and let µ× ν de-

note the product measure. Prove, if (fm) and (gn) are orthonormal bases for L2(µ), L2(ν)

respectively, then the collection of functions {hmn(x, y) = fm(x)gn(y)} is an orthonromal

basis for L2(µ × ν). Use this result to construct an orthonormal basis for L2(Rn), and

conclude that L2(Rn) is separable.

Problem 23.9. (Weak Convergence)prob:hilbert-weak

a) Prove, if (hn) converges to h in norm, then also (hn) converges to h weakly.

(Hint: Cauchy-Schwarz.)

b) Prove, if H is infinite-dimensional, and (en) is an orthonormal sequence in H,

then en → 0 weakly, but en 6→ 0 in norm. (Thus weak convergence does not

imply norm convergence.)

c) Prove (hn) converges to h in norm if and only if (hn) converges to h weakly and

‖hn‖ → ‖h‖.

d) Prove if (hn) converges to h weakly, then ‖h‖ ≤ lim inf ‖hn‖.

Problem 23.10. Suppose H is countably infinite-dimensional (separable Hilbert space).

Prove, if h ∈ H and ‖h‖ ≤ 1, then there is a sequence hn in H with ‖hn‖ = 1 for all n,

and (hn) converges to h weakly, but hn does not converge to h strongly.

prob:weak-compactness Problem 23.11. Prove Theorem
thm:weak-compactness
23.41.
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Problem 23.12. Prove, if (an) is a sequence of complex numbers, then the following

are equivalent.

(1)
∑

n∈N an converges as a net;

(2)
∑∞

n=1 an converges unconditionally;

(3)
∑∞

n=1 an converges absolutely.

Problem 23.13. Suppose (hn) is a sequence from a Hilbert space H. Show, if
∑∞

n=1 hn

converges absolutely, then
∑∞

n=1 hn converges unconditionally and as a net.

prob:netvuncond Problem 23.14. Suppose H is a Hilbert space and (hj) is a sequence from H. Show,∑∞
j=1 hj converges unconditionally if and only if

∑
j∈N hj converges as a net. (Warning:

showing unconditional convergence implies convergence as a net is challenging.) Suppose∑
hj converges unconditionally to h, but does not converge to h as a net. Thus, there

is a δ > 0 such that if F ⊂ N is a finite set, then there is a finite set G ⊃ F such that

‖
∑
j∈G

hj − h‖ ≥ δ.

On the other hand, there is an N such that if n ≥ N , then

‖
n∑
j=1

hj − h‖ <
δ

2

Let I1 = {1, 2, . . . , N}. There is a finite set J1 ⊃ I1 such that

‖
∑
j∈J1

hj − h‖ ≥ δ.
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Let I2 = {1, . . . ,max(J1)}. There is a finite set J2 ⊃ I1 such that

‖
∑
j∈J2

hj − h‖ ≥ δ.

Continuing in this fashion gives sequence (Ik) and (Jk) of finite subsets of N such that

Ik ⊂ Jk ⊂ Ik+1 and

‖
∑
j∈Jk

hj − h‖ ≥δ

‖
∑
j∈Ik

hj − h‖ ≤
δ

2
.

Choose a permutation π of N compatible with the ordering I1, J1 \ I1, I2 \ J1, . . . . To

complete the proof observe that
∑

j hπ(j) does not converge to h since this sum has as

some of its partial sum each of
∑

j∈Jk hj.
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24. Lp spaces
sec:Lp

Definition 24.1. Let (X,M , µ) be a measure space. For 0 < p <∞, let Lp(µ) denote

the space of measurable functions f : X → C which satisfy

‖f‖p :=

(∫
X

|f |p dµ
)1/p

<∞,

where f and g are identified when f = g a.e. /

The inequality

|f + g|p ≤ (2 max(|f |, |g|))p ≤ 2p(|f |p + |g|p)

and monotonicity of the integral imply that Lp is a vector space for all 0 < p <∞.

Proposition 24.2. If 1 ≤ p <∞, then ‖f‖p is a norm on Lp.

Proof. Trivially ‖f‖p ≥ 0, and if ‖f‖p = 0 then f = 0 a.e., which means f = 0

since we have identified functions that agree almost everywhere. The homogoeneity

‖cf‖p = |c|‖f‖p is evident from the definition. To prove the triangle inequality, let

f, g ∈ Lp and make the following reductions. First, since |f + g|p ≤ (|f |+ |g|)p, we can

assume f, g ≥ 0. Using homogeneity, scale f and g by the same constant factor so that

‖f‖p + ‖g‖p = 1. Choose t = ‖f‖p. Thus f = tF, g = (1 − t)G with F,G ∈ Lp and

‖F‖p = ‖G‖p = 1. Proving the triangle inequality has now been reduced to proving

∫
X

|tF + (1− t)G|p dµ ≤ 1. (36) eqn:lp-convexity



D
RA
FT

98 MAA6617 COURSE NOTES SPRING 2018

The function x→ |x|p is convex on [0,+∞), that is,

|tx1 + (1− t)x2|p ≤ t|x1|p + (1− t)|x2|p (37) eqn:pbigger1convex

for all x1, x2 ≥ 0. Applying the inequality of Equation (
eqn:pbigger1convex
37) to Equation (

eqn:lp-convexity
36) gives∫

X

|tF + (1− t)G|p dµ ≤
∫
X

t|F |p + (1− t)|G|p dµ = 1

as desired. �

Remark 24.3. Note that the proof of the triangle inequality breaks down when p < 1

because the function x → |x|p is not convex for these p. In fact, one can use the non-

convexity to show that the triangle inequality fails in this range. Indeed since x→ |x|p

is concave, ap+bp > (a+b)p for all a, b > 0. Thus, for disjoint sets E,F of finite positive

measure,

‖1E + 1F‖p = (µ(E) + µ(F ))1/p > µ(E)1/p + µ(F )1/p = ‖1E‖p + ‖1F‖p.

�

When p =∞, recall that L∞(µ) is the space of all essentially bounded measurable

functions, again identifying functions that agree almost everywhere. Recall too, a func-

tion is essentially bounded if there exists a number M < ∞ such that |f(x)| ≤ M for

a.e. x ∈ X (equivalently, µ({|f | > M}) = 0) and ‖f‖∞ is the smallest M with this

property. In particular we have

‖f‖∞ = inf{M : |f(x)| ≤M a.e.} = sup{M : µ({x : |f(x)| > M}) > 0}.
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It is straightforward to check that ‖f‖∞ is a norm on L∞(µ), and that fn → f in L∞

if and only if fn converges to f essentially uniformly, from which it follows that L∞ is

complete. (Problem
prob:Linfty-basics
24.5).

Example 24.4. If f = A1E with A > 0 and 0 < µ(E) < ∞, then f ∈ Lp for

every 0 < p ≤ ∞. In fact ‖f‖p = Aµ(E)1/p for finite p, and ‖f‖∞ = A. Thus

‖f‖∞ = limp→∞ ‖f‖p. This result is true more generally (see Problem
prob:lim-lp-norms
24.4). 4

The proof that Lp is complete for 1 ≤ p < ∞ is essentially the same as the ones

already given in the case of L1 and L2 and is left as an exercise.

Theorem 24.5. For 1 ≤ p ≤ ∞, Lp is a Banach space.

For p < ∞, a function f is in Lp if and only if |f |p ∈ L1. Thus, an application of

Markov’s inequality to |f |p gives the following result.

prop:chebyshev Proposition 24.6 (Chebyshev’s inequality). Suppose f ∈ Lp(µ) and t > 0. Then

µ({x : |f | > t}) ≤ 1

tp

∫
X

|f |p dµ =

(
‖f‖p
t

)p
. (38) eqn:chebyshev

prop:simple-dense-Lp Proposition 24.7. Simple functions are dense in Lp for all 1 ≤ p ≤ ∞.

Proof. We prove the 1 ≤ p <∞ case and leave p =∞ as an exercise. Let f ∈ Lp. It is

straightforward to check that Ref, Imf are in Lp, as are the positive and negative parts

when f is real valued. Thus, because Lp is a normed space, it may be assumed that f is
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unsigned. Next, by dominated convergence we see that f can be approximated in Lp by

bounded functions (take fn = min(f, n) and note that 0 ≤ (f − fn)p ≤ fp and converges

pointwise to 0), so we can assume f is bounded; and again by dominated convergence

we can approximate f in Lp by functions supported on sets of finite measure (take fn to

be 1Enf , where En = {|f | > 1
n
}). Thus we may assume f is nonnegative, bounded, and

supported on a set of finite measure. But in this case f can be approximated essentially

uniformly by simple functions, and it is easy to verify that if fn → f essentially uniformly

on a finite measure space, then (fn) converges to f in Lp also (the proof is the same as

in the L1 case). �

When we write Lp(Rn) we always refer to Lebesgue measure. We then have the

following density result for Lp(Rn); the proof is essentially the same as the L1 case.

Proposition 24.8. For 1 ≤ p <∞ the space of continuous functions of compact support

Cc(Rn) is dense in Lp(Rn).

It should be clear that Cc(Rn) is not dense in L∞(Rn) (why?)

Proof Sketch. Consider the case n = 1 and suppose f ∈ Lp(R). Given ε > 0, there is an

L1 simple function ψ such ‖ψ− f‖1 < ε by Proposition
prop:simple-dense-Lp
24.7. It suffices (by linearity) to

assume ψ = 1E for a set E with m(E) <∞. By Littlewood’s first principle, we can find a

set A, a finite union of disjoint open intervals A =
⋃n
j=1(aj, bj), such that m(A∆E) < εp.

It follows that ‖1A − 1E‖p = ‖1A∆E‖p < ε. Let gj denote the a continuous, piecewise
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linear function such that |gj(x)| ≤ 1 for all x and is equal to 1 for x ∈ (aj, bj) and 0 for

x < aj − 1
2
εp

2jp
and x > bj + 1

2
εp

2jp
. (Draw a picture.) Then for each interval Ij = (aj, bj),

we have ‖gj − 1Ij‖p < ε2−j. Let g =
∑n

j=1 gj. Then g is continuous and belongs to L1,

and from the triangle inequality we have ‖g − 1A‖p ≤
∑n

j=1 ‖gj − 1Ij‖p < ε. It follows

that ‖g − 1E‖p < 2ε and hence

‖f − g‖p ≤ ‖f − 1E‖p + ‖1E − 1A‖p + ‖1A − g‖p < 3ε

and the proof is complete in the case n = 1.

In higher dimensions, the same approximation scheme works; it suffices (using lin-

earity, Littlewood’s first principle, and the ε/2n trick as before) to approximate the

indicator function of a box B = I1 × · · · × In; again a piecewise linear function which

is 1 on the box and 0 outside a suitably small neighborhood of the box suffices. The

details are left as an exercise. �

24.1. Duality in Lp spaces. In this section it is shown that, for 1 ≤ p <∞, the dual

of the Banach space Lp is Lq, where 1
p

+ 1
q

= 1 (interpret 1/∞ = 0). The starting point

is Hölder’s inequality.

thm:holder Theorem 24.9 (Hölder’s inequality). Suppose 1 ≤ p, q ≤ ∞ and 1
p

+ 1
q

= 1 (interpret

1/∞ = 0). If f ∈ Lp and g ∈ Lq, then fg ∈ L1, and

‖fg‖1 ≤ ‖f‖p‖g‖q.
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Further, for 1 < p, q <∞, equality holds if and only if ‖f‖pp |g|q = ‖g‖qq |f |p; and for

p = 1 and q =∞, equality holds for g = 1.

For 1 < p < ∞ and f ∈ Lp, let g = |f |p f−1. A computation shows g ∈ Lq and

‖g‖q = ‖f‖p−1
p . Thus,∫

fg du = ‖fg‖1 = ‖f‖pp = ‖f‖p ‖f‖p−1
p = ‖f‖p ‖g‖q.

Thus for this choice of g, equality holds in Hölder’s inequality. On the other hand,

consider the function g : [0, 1]→ [0, 1] defined by

g(x) =
∞∑
j=1

1

2j
1( 1

2j
, 1

2j−1
.

Thus g ∈ L∞([0, 1]) and ‖g‖∞ = 1. On the other hand, if f ∈ L1([0, 1]) and ‖f‖1 = 1,

then

|
∫
fg dµ| < 1

and hence, for this g ∈ L∞([0, 1]), equality never holds.

The proof of Hölder’s inequality uses Young’s inequality.

lem:young Lemma 24.10 (Young’s inequality). If a, b are nonnegative numbers and 1 < p, q <∞

satisfy 1
p

+ 1
q

= 1, then

ab ≤ ap

p
+
bq

q

and equality holds if and only if bq = ap.

Proof. If a or b is 0 the result is evident. So suppose a, b > 0. Define ψ : [−1
p
,∞) → R

by ψ(t) = (1 + t)p− (1 + pt). A calculus exercise shows ψ(0) = 0 and ψ(t) > 0 for t 6= 0.
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Let u = ap and v = bq and choose t so that 1 + pt = u
v
> 0. Now,

a b =v(1 + pt)
1
p

≤v(1 + t)

=v

[
1 +

u
v
− 1

p

]
=
u

p
+ v(1− 1

p
)

=
ap

p
+
bq

q
.

Note that equality holds if and only if t = 0; that is ap = bq �

Proof of Theorem
thm:holder
24.9. The proof is very simple in the case p =∞ or q =∞ (in which

case the other exponent is 1), so suppose 1 < p, q < ∞ and f, g are both nonzero. By

homogeneity we may normalize so that ‖f‖p = ‖g‖q = 1. We must now show that∫
X

|fg| dµ ≤ 1. (39) eqn:holder-step

Applying Lemma
lem:young
24.10 gives

|f(x)g(x)| ≤ 1

p
|f(x)|p +

1

q
|g(x)|q. (40) eq:4

Integrating (
eq:4
40) with respect to µ and applying the normalizations on p, q, f, g gives (

eqn:holder-step
39).

Finally, observe, in the case 1 < p, q < ∞, that equality holds in Hölders in inequality

if and only if equality holds a.e. µ in equation (
eq:4
40) if and only if |f |p = |g|q a.e. µ by

Lemma
lem:young
24.10. �

Example 24.11. One can get a more intuitive feel for what Hölder’s inequality says by

examining it in the case of step functions. Let E,F be sets of finite, positive measure
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and put f = 1E, g = 1F . Then ‖fg‖1 = µ(E ∩ F ) and

‖f‖p‖q‖q = µ(E)1/pµ(F )1/q,

so Hölder’s inequality can be proved easily in this case using the relation 1
p

+ 1
q

= 1 and

the fact that µ(E ∩ F ) ≤ min(µ(E), µ(F )). 4

Remark 24.12. A more general version of Hölder’s inequality says the following: let

1 ≤ p, q ≤ ∞ and 1
r

= 1
p

+ 1
q
. If f ∈ Lp and g ∈ Lq, then fg ∈ Lr, and

‖fg‖r ≤ ‖f‖p‖g‖q (41) eqn:generalized-holder

See Problem
prob:generalized-holder
24.1. �

Numbers 1 ≤ p, q ≤ ∞ such that 1
p

+ 1
q

= 1 are conjugate exponents. Given p,

its conjugate index q is of course uniquely determined, q = p
p−1

. There are numerous

relations between p and q. For instance p(q − 1) = q and (q − 1)(p − 1) = 1. Hölder’s

inequality implies that each g ∈ Lq determines a bounded linear functional Lg : Lp(µ)→

C by

λg(f) =

∫
X

f g dµ

and moreover ‖λg‖ ≤ ‖g‖q. One of the most important facts about Lp spaces is that the

converse is true for a σ-finite measure µ and 1 ≤ p <∞.

thm:Lp-dual Theorem 24.13. Suppose 1 ≤ p < ∞, 1
p

+ 1
q

= 1 and µ is a σ-finite measure. If

λ : Lp(µ)→ C is a bounded linear functional, then there exists a unique g ∈ Lq(µ) such

that λ = λg. Moreover ‖λ‖ = ‖g‖q.
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Thus Λ : Lq(µ) → Lp(µ)∗ defined by Λ(g) = λg is an isometric isomomorphism. It

is in this sense that we write Lp(µ)∗ = Lq(µ) (for 1 ≤ p <∞ and 1
p

+ 1
q

= 1).

The following two lemmas will be used to pass from the case of a finite measure to

that of a σ-finite measure in the proof of Theorem
thm:Lp-dual
24.13.

lem:wsig1 Lemma 24.14. If µ is a σ-finite measure on a measurable space (X,M ), then there

exists a measurable function w ∈ L1(µ) such that 0 < w(x) < 1 for all x.

Proof. Write X = ∪∞n=1Xn, a countable union of disjoint measurable sets of finite mea-

sure. Let wn = 1
2n(µ(Xn)+1)

1Xn and w =
∑∞

n=1 wn. �

lem:wsig2 Lemma 24.15. Suppose µ is a σ-finite measure, w ∈ L1(µ) and 0 < w(x) < 1 for all

x. Let τ denote the measure w dµ.

For 1 < p <∞, a measurable function f is in Lp(µ) if and only if g = w
1
pf ∈ Lp(τ)

and in this case ‖f‖p = ‖g‖p; that is, the mapping Φp : Lp(τ)→ Lp(µ) defined by

Φp(f) = w
1
pf

is a (linear) isometric isomorphism.

Proof. It is easy to check that Φp is isometric with inverse Ψ defined by Ψf = w−
1
pf . �

Proof of Theorem
thm:Lp-dual
24.13. Uniqueness of g is clear, since if h is also in Lq(µ) and λg = λh,

then, for any measurable set E of finite measure, λg−h(1E) = 0 and it thus follows from

the σ-finiteness assumption, that g = h µ-a.e.
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The idea of the proof is to use the linear functional λ to define a set function

M 3 E → λ(1E), prove this set function is a measure absolutely continuous to µ and

choose g via the Radon-Nikodym theorem. Finally it must be shown that this g belongs

to Lq. The details follow.

Suppose for now that µ is finite; i.e., (X,M , µ) is a finite measure space. In this

case, if E ∈M , then 1E ∈ Lp(µ). Let u = Re(λ). Since λ is bounded, u is continuous.

Define ν : M → R by

ν(E) := u(1E).

To prove that ν is a countably additive, suppose (En)∞n=1 is a sequence of disjoint

measurable sets and let E = ∪∞j=1Ej. Let sn =
∑n

j=1 1Ej . In particular, (sn) increases

pointwise with limit s = 1E. Further, 0 ≤ (s − sn)p ≤ s and thus, by dominated

convergence, (sn) converges to s in Lp(µ). Using continuity and (real) linearity of u,

ν(E) = u(s) = lim
n→∞

u(sn) = lim
n→∞

n∑
j=1

ν(Ej) =
∞∑
j=1

ν(Ej).

Evidently ν(∅) = 0 and hence ν defines a finite signed measure on (X,M ).

If µ(E) = 0, then 1E = 0 in Lp so ν(E) = 0. Thus, the measure ν is absolutely

continuous with respect to µ. Let g1 denote the Radon-Nikodym derivative dν/dµ. Since

ν is finite, the Radon-Nikodym theorem gives g1 ∈ L1(µ). Applying the same arguments

to Im(λ), we define g2 similarly, and put g = g1 + ig2. In particular, for E ∈M ,

λ(1E) =

∫
E

g dµ. (42) eq:GE

Temporarily, view λg as defined (and continuous) on L∞(µ).



D
RA
FT

MAA6617 COURSE NOTES SPRING 2018 107

Now suppose f is a bounded unsigned measurable function. Since µ is a finite

measure, f is in Lp(µ) as well as L∞(µ). Hence, both λg(f) and λ(f) are defined. If s

is a measurable simple function, then by equation (
eq:GE
42),

λ(s) =

∫
X

sg dµ.

There exists a sequence (sn) of measurable simple functions 0 ≤ sn ≤ f such that (sn)

converges to f uniformly and therefore in both Lp(µ) and L∞(µ). It follows

λ(f) = limλ(sn) = λg(sn) = λg(f).

It now follows that if f is bounded and measurable, then λ(f) = λg(f).

To prove g ∈ Lq, first assume p > 1. For positive integers N , let EN = {|g| ≤ N}

and let gN = g1En . Thus gN is bounded and so is fN = gN
q
2 g

q
2
−1

N . By (Lp(µ)) continuity

of λ,

‖fN‖p ‖λ‖ ≥ |λ(fN)| = |λg(fN)| =
∫
X

fNg dµ =

∫
X

|gN |q dµ = ‖gN‖qq. (43) eqn:dual-lp-step

On the other hand, ‖fN‖p = ‖gN‖q−1
q , and combining this equality with (

eqn:dual-lp-step
43) we see

that ‖gN‖q ≤ ‖λ‖. By monotone congvergence, ‖g‖q ≤ ‖λ‖ < ∞. Now that we know

g ∈ Lq, it follows that λg is continuous. It also agrees with λ on unsigned bounded

functions and therefore on simple functions. Since simple functions are dense in Lq(µ),

the conclusion λ = λg follows. Further, ‖λg‖ = ‖λ‖ ≥ ‖g‖q. and since Hölder gives the

reverse inequality, ‖λg‖ = ‖g‖q.
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In the p = 1 case, put Et = {|g| > t} and let ft = g
gµ(Et)

1Et . Thus ‖ft‖1 = µ(Et) for

all t, and, since f ∈ L∞(µ),

µ(Et) ‖λ‖ = ‖λ‖ ‖ft‖1 ≥ |λ(ft)| = |λg(ft)| =
∫
X

ftg dµ =

∫
Et

g dµ ≥ t µ(Et). (44) eq:5

Hence µ(Et) = 0 for t > ‖λ‖ and thus g ∈ L∞(µ) and in fact ‖λ‖ ≥ ‖g‖∞.

For the σ-finite case with p > 1, suppose X = ∪∞n=1Xn where the Xn are measureable

and of finite measure. For 1 < p < ∞, let w be as in Lemma
lem:wsig1
24.14. Likewise, let

τ = w dµ. By Lemma
lem:wsig2
24.15 the mappings Φr : Lr(τ) → Lr(µ) defined by Φrh = w

1
rh

are linear isometric isomorphisms for 1 < r < ∞. Thus, ψ = λΦp is a bounded linear

functional on Lp(τ). Since τ is a finite measure, by what is already proved, there is a

G ∈ Lq(τ) such that ψ = λG. Let g = ΦqG = w
1
qG. Thus g ∈ Lq(µ) and ‖g‖q = ‖G‖q.

Moreover, if f ∈ Lp(µ), then h := Φ−1
p f = w−

1
pf ∈ Lp(τ) and

λ(f) =ψ(h) = λG(h)

=

∫
hGdτ =

∫
hGw dµ

=

∫
w

1
ph (w

1
qG) dµ =

∫
f g dµ = λg(f).

Extending from finite to σ-finite in the case p = 1 is left to the gentle reader. �

rem:testLp Remark 24.16. In the case (X,M , µ) is σ-finite and 1 < p < ∞, Theorem
thm:Lp-dual
24.13 can

be used to test whether a given measurable function f : X → C is in Lp. Namely,

letting q denote the conjugate exponent to p, if for each g ∈ Lq(µ) the function fg is

integrable and the linear functional λ : Lq(µ)→ C defined by λ(g) =
∫
fg dµ is bounded,
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then there is an h ∈ Lp(µ) such that λ = λh. It follows that
∫
E
f dµ =

∫
E
h dµ for all

measurable sets E of finite measure. Therefore f = h a.e. µ and hence f ∈ Lp(µ). �

Recall, a Banach space X is reflexive if the canonical isometric inclusion of X into

X∗∗ is onto. Recall this inclusion is given by mapping x ∈ X to the linear functional x̂

defined by x̂(λ) = λ(x) for λ ∈ X∗.

cor:lp-reflexive Corollary 24.17. For 1 < p <∞, Lp is reflexive.

Proof. Let Φ : Lp → (Lp)∗∗ denote the canonical inclusion. Thus, for g ∈ Lp, the

functional Φ(g) is given by Φ(g)(λ) = λ(g) for λ ∈ (Lp)∗. It suffices to show Φ is

onto. Accordingly, let σ ∈ Lp(µ)∗∗ be given. Let Λ : Lq → (Lp)∗ denote the isometric

isomorphism Λ(g) = λg given by Theorem
thm:Lp-dual
24.13. It follows that σ ◦ Λ : Lq → C is a

continuous linear functional and hence, by Theorem
thm:Lp-dual
24.13, there is a g ∈ Lp(µ) such

that λg = σ ◦Λ. Now let λ ∈ (Lp)∗ be given. There is an h ∈ Lq(µ) such that λ = Λ(h).

Thus, for ψ ∈ Lp,

λ(ψ) =

∫
ψhdµ.

It follows that

σ(λ) =σ(Λ(h)) = λg(h)

=

∫
gh dµ = λ(g) = Φ(g)(λ).

�

Theorem
thm:Lp-dual
24.13 above fails in general when p = 1. The canonical inclusion of L1 into

(L∞)∗ is defined by sending g ∈ L1 to the bounded linear functional on L∞ defined by
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the formula λg(f) =
∫
X
fg dµ. Unless µ is a finite sum of atoms, there exist bounded

linear functionals on L∞ that are not of this form. An abstract way to see this is that

in when µ is σ-finite, L1(µ) is separable, but if L∞(µ) is separable, then (X,M , µ) is

finitely atomic; i.e., X = ∪Nj=1Aj where µ(Aj) > 0 and if B ⊂ Aj and µ(B) < µ(Aj), then

µ(B) = 0. Thus if it were the case that (L∞)∗ ∼= L1, then L∞ would be separable by the

result in Problem
prob:separable-dual
21.10, a contradiction. Problem

prob:dual-of-linfty
24.10 gives a somewhat more explicit

argument in the case of L∞(R). Note that in the example following the statement of

Hölder’s inequality, there does not exists and f ∈ L1 such that λf (g) = ‖g‖∞ showing

that, in view of the Hahn-Banach Theorem, the dual of L∞([0, 1]) properly contains

L1([0, 1]).

24.2. Distribution functions and weak Lp. Let (X,M , µ) be a measure space and

f : X → C a measurable function. The distribution function of f is the function

λf : (0,+∞)→ [0,+∞] defined by

λf (t) = µ({x : |f(x)| > t}).

To begin building an intuition about λf , we have the following lemma.

lem:dist-of-simples Lemma 24.18. Let f =
∑n

j=1 cj1Ej be a simple function with the Ej disjoint measurable

sets, and the cj ordered as 0 < c1 < c2 < · · · < cn < +∞. Then

λf (t) =



µ(En) + · · ·+ µ(E2) + µ(E1), 0 ≤ t < c1,

µ(En) + · · ·+ µ(E2), c1 ≤ t < c2,

· · · , · · ·
µ(En), cn−1 ≤ t < cn,

0 t ≥ cn
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Proof. Problem
prob:dist-of-simples
24.11. �

The basic properties of λf are collected in the following proposition:

prop:dist-function-basic Proposition 24.19. a) λf is decreasing and right continuous.

b) [Monotonicity] If |f | ≤ |g| a.e., then λf ≤ λg everywhere.

c) [Monotone convergence] If |fn| increases to |f | pointwise a.e., then λfn increases

to λf .

d) [Subadditivity] If f = g + h, then λf (t) ≤ λg(t/2) + λh(t/2).

Proof. Let E(t, f) = {x : |f(x)| > t}. Thus λf (t) = µ(E(t, f)). In particular, λf is

decreasing since E(t, f) ⊂ E(s, f) when s < t. Since E(t, f) is the increasing union of

E(t+ 1
n
, f), monotone convergence for sets gives

λf (E(t, f)) = µ(∪∞n=1E(t+
1

n
, f)) = lim

n→∞
E(t+

1

n
, f) = lim

n→∞
λf (t+

1

n
).

Now, if (tm) is any sequence converging to t for which t ≤ tm for all m, then, given ε > 0

choose N so that λf (t)− λf (tN) < ε. Choose M such that t + 1
M
> tm ≥ t for m ≥ M

and note that, since λf is decreasing,

0 ≤ λf (t)− λf (tm) ≤ λf (t)− λf (tN) < ε

to complete the proof of item (a).

Item (b) is immediate from the definition. For (c) we have that for each fixed

t > 0, E(t, f) is the increasing union of the E(t, fn). Now argue as in the proof of part

(a). Finally (d) is a pigeonhole argument: if |f(x)| > t, then either |g(x)| > t/2 or
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|h(x)| > t/2. Hence,

E(t, f) ⊂ E(
t

2
, g) + E(

t

2
, h).

�

The main use of the distribution function is to convert integrals of functions of f into

integrals against the measure induced by λf . Indeed, the function λf (t) is decreasing and

right continuous on [0,+∞] and hence defines a (negative) Borel measure ν on [0,+∞]

by

ν((a, b]) := λf (a)− λf (b)

and passing to the Caratheodory extension. Thus if ϕ : [0,+∞]→ C is a Borel function

we can consider integrals
∫
ϕdν =

∫
ϕdλf . The following formula relates these integrals

to f and µ.

Proposition 24.20. Suppose λf (t) < ∞ for all t > 0 and ϕ ≥ 0 is an unsigned Borel

function. Then ∫
X

ϕ(|f |) dµ = −
∫ ∞

0

ϕ(t) dλf (t). (45) eqn:dist-integration-lemma

Proof. Let 0 ≤ a < b and ϕ = 1(a,b]. Then ϕ(|f |) = 1a<|f |≤b, so∫
X

ϕ(|f |) dµ = µ(a < |f | ≤ b) = λf (b)− λf (a);

on the other hand

−
∫ ∞

0

ϕ(t) dλf (t) = −ν((a, b]) = −(λf (a)− λf (b))
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so (
eqn:dist-integration-lemma
45) holds when ϕ = 1(a,b]. Since both sides are linear in ϕ, it also holds for simple

functions, and then for all unsigned Borel functions by monotone convergence. �

The most important case of the above is ϕ(t) = tp, since it will allow us to obtain

very useful expressions for the Lp integrals
∫
X
|f |p dµ. In fact what is most useful is not

(
eqn:dist-integration-lemma
45) itself but its “integrated-by-parts” form:

prop:dist-Lp-integral Proposition 24.21. If 0 < p <∞ then∫
X

|f |p dµ = p

∫ ∞
0

tp−1λf (t) dt.

Proof. This can be proved using the previous proposition and integration by parts for

Lebesgue-Stieltjes measures, or directly as follows. If λf (t) = +∞ for some t then both

integrals are infinite. Otherwise, first let f be a simple function; then the identity can be

verified directly using Lemma
lem:dist-of-simples
24.18. For general f , take a sequence of simple functions

0 ≤ fn increasing to |f |; then the formula holds by Lemma
lem:dist-of-simples
24.18, Proposition

prop:dist-function-basic
24.19(c),

and monotone convergence. �

The distribution function is used to define the so-called “weak Lp” spaces, as follows:

first observe that if f ∈ Lp, then from Chebyshev’s inequality we have

µ({|f | > t}) ≤ 1

tp

∫
X

|f |p dµ

or rearranging

tpλf (t) ≤ ‖f‖pp for all t > 0.
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For general f , say that f belongs to weak Lp if

(sup
t>0

tpλf (t))
1/p := [f ]p <∞.

From what was just said, if f ∈ Lp, then f belongs to weak Lp, but the converse does

not hold. The standard example is f(x) = x−1/p on (0,∞). On the other hand, weak

Lp functions are “almost” in Lp, in the sense that if we use Proposition
prop:dist-Lp-integral
24.21 we find

∫
X

|f |p dµ = p

∫ ∞
0

tp−1λf (t) dt ≤ [f ]p

∫ ∞
0

t−1 dt

and the integral is just barely divergent.

24.3. The Hardy-Littlewood maximal function redux. As an illustration of the

usefulness of the distribution function (and the associated idea of splitting Lp functions

into their “small” and “large” parts, we reconsider the Hardy-Littlewood maximal func-

tion. (This and the next subsection follow sections I.1 and I.4 of Singular Integrals and

Differentiability Properties of Functions by Eli Stein.) Let f be a locally integrable

function on Rn, then

(Mf)(x) := sup
r>0

1

m(B(r, x))

∫
B(r,x)

|f(y)| dy

In the language of distribution functions, the Hardy-Littlewood maximal theorem (The-

orem 16.4) says that if f ∈ L1(Rn), then Mf belongs to weak L1, with [Mf ]1 ≤ 3n‖f‖1.

We now investigate what happens for f ∈ Lp, 1 < p ≤ ∞, and find the situation is

rather better. First, for p =∞ it is trivial that ‖Mf‖∞ ≤ ‖f‖∞. For finite p we have:
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Theorem 24.22. If f ∈ Lp(Rn), 1 < p <∞, then Mf ∈ Lp and

‖Mf‖p ≤ 2

(
3np

p− 1

)1/p

‖f‖p

Proof. Let f ∈ Lp(Rn). We fix a parameter t > 0 and use it to cut off f : let

f1(x) :=

{
f(x) if f(x) ≥ t/2,

0 otherwise
.

Note that by vertical truncation, f1 ∈ L1, and we have |f(x)| ≤ |f1(x)| + t/2 and

(Mf)(x) ≤ (Mf1)(x) + t/2. It follows that

{x : Mf(x) > t} ⊂ {x : Mf1(x) > t/2}

so by the Hardy-Littlewood maximal theorem applied to the L1 function f1, writing

Et = {x : Mf(x) > t} we have

m(Et) ≤
2 · 3n

t
‖f1‖1 =

2 · 3n

t

∫
|f |>t/2

|f(y)| dy. (46) eqn:HL-p-step

Now write g = Mf , then m(Et) is just the distribution function λg(t). By Proposi-

tion
prop:dist-Lp-integral
24.21 we have ∫

Rn
|Mf(x)|p dx = p

∫ ∞
0

tp−1λg(t) dt.

Using (
eqn:HL-p-step
46) we obtain

‖Mf‖pp = p

∫ ∞
0

tp−1m(Et) dt ≤ p

∫ ∞
0

tp−1

(
2 · 3n

t

∫
|f |>t/2

|f(y)| dy
)
dt

We apply Fubini to the double integral and inegrate dt first. This gives

p

∫ ∞
0

tp−1

(
2 · 3n

∫
|f |>t/2

|f(y)| dy
)
dt =

∫
Rn
|f(y)|

(∫ 2|f(y)|

0

tp−2 dt

)
dy
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The inner integral is ∫ 2|f(y)|

0

tp−2 dt =
1

p− 1
2p−1|f(y)|p−1

so we have finally

‖Mf‖pp ≤
2p · 3np
p− 1

∫
Rn
|f(y)|p dy

which finishes the proof. �

24.4. The Marcinkiewicz interpolation theorem. The idea used in the proof of the

Lp boundedness of the Hardy-Littlewood maximal operator can be extended to prove a

more general result, called the Marcinkiewicz interpolation theorem. We will not consider

the most general version of the theorem here (it may be found in Folland) but prove a

special case that is adequate for many purposes. We fix a measureable space (X,M , µ);

Lp always refers to Lp(µ).

We need a few definitions. Let 1 ≤ p, q ≤ ∞. A mapping T : Lp → Lq is of type

(p, q) if there is a constant A > 0 so that

‖Tf‖q ≤ A‖f‖p

for all f ∈ Lp. The mapping is of weak type (p, q) if

µ({x : |Tf(x)| > t} ≤
(
A‖f‖p
t

)q
, for q <∞

where the constant A does not depend on f or t. (In other words, T maps Lp into weak

Lq, with [Tf ]q ≤ A‖f‖p.)

When q =∞ weak type (p, q) simply means type (p, q).
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We say that a transformation T (defined on some space of measurable functions)

is sub-linear if |Tf(x)| ≤ |Tg(x)| + |Th(x)| for f = g + h, and |T (cf)| = |c||Tf | for all

scalars c.

Finally we let Lp + Lq denote the vector space of functions of the form f = g + h

where g ∈ Lp, h ∈ Lq. Note that if p < r < q, then by the truncation lemmas we see

that Lr ⊂ Lp + Lq.

Theorem 24.23 (Marcinkiewicz interpolation theorem (special case)). Suppose that

1 < r ≤ ∞. If T is a sub-linear transformation from L1 + Lr to the vector space of

measurable functions, and T is of weak type (1, 1) and weak type (r, r), then T is of type

(p, p) for all 1 < p < r.

Proof. The case r =∞ closely parallels the proof given for the Hardy-Littlewood maxi-

mal function and is left as an exercise, so we assume 1 < r < ∞. Fix f ∈ Lp, we wish

to estimate its distribution function λf (t). We fix t > 0 for the moment and use this to

cut off f : define

f1(x) :=

{
f(x) if |f(x)| > t

0 if |f(x)| ≤ t

f2(x) :=

{
f(x) if |f(x)| ≤ t

0 if |f(x)| > t

so that f = f1 + f2, f1 ∈ L1 and f2 ∈ Lr. Since |Tf | ≤ |Tf1| + |Tf2|, we have by the

subadditvity of λ

λTf (t) ≤ λTf1(t/2) + λTf2(t/2)
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and so by the assumption that T is of weak type (1, 1) and (r, r),

λTf (t) ≤
A1

t/2

∫
|f1(x)| dµ(x) +

Arr
(t/2)r

∫
|f2(x)|r dµ(x)

for some fixed constants A1, Ar as in the definition of weak type. Because of the choice

of splitting f = f1 + f2, we have

λTf (t) ≤
2A1

t

∫
|f |>t
|f(x)| dµ(x) +

(2Ar)
r

tr

∫
|f |≤t
|f(x)|r dµ(x) (47) eqn:marc-step

Using the formula ‖Tf‖pp = p
∫∞

0
tp−1λTf (t) dt we multiply both sides of (

eqn:marc-step
47) by ptp−1

and integrate dt. To handle first integral in (
eqn:marc-step
47) we observe∫ ∞

0

tp−1t−1

∫
|f |>t
|f(x)| dµ(x)dt =

∫
X

|f |
∫ |f |

0

tp−2 dt dµ(x) (48)

=
1

p− 1

∫
X

|f ||f |p−1 dµ (49)

since p > 1, similarly for the second integral∫ ∞
0

tp−1t−r
∫
|f |≤t
|f(x)|r dµ(x)dt =

∫
X

|f |r
∫ ∞
|f |

tp−1−r dt dµ(x) (50)

=
1

r − p

∫
X

|f |r|f |p−r dµ (51)

Putting these together we find that

‖Tf‖p ≤ Ap‖f‖p, with App =

(
2rA1

p− 1
+

(2Ar)
r

r − p

)
p.

�

24.5. Some inequalities. The following should be viewed as a continuous analog of

the triangle inequality for the Lp norm. It says that “the Lp norm of the integral is less

than the integral of the Lp norms.”
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thm:minkowski Theorem 24.24 (Minkowski’s inequality for integrals). Let (X,M , µ) and (Y,N , ν) be

σ-finite measure spaces and let f be a jointly measurable function on X × Y .

a) If f is unsigned and 1 ≤ p <∞, then

[∫
X

(∫
Y

f(x, y) dν(y)

)p
dµ(x)

]1/p

≤
∫
Y

[∫
X

f(x, y)p dµ(x)

]1/p

dν(y) (52) eqn:minkowski-a

b) If 1 ≤ p ≤ ∞, f(·, y) ∈ Lp(µ) for a.e. y, and the function ‖f(·, y)‖p is in L1(ν),

then f(x, ·) ∈ L1(ν) for a.e. x, the function
∫
f(x, y) dν(y) is in Lp(µ), and∥∥∥∥∫ f(·, y) dν(y)

∥∥∥∥
p

≤
∫
‖f(·, y)‖p dν(y).

The σ-finite hypothesis is needed to invoke Tonelli’s Theorem. The special case(∫
|
N∑
j=1

fj|p dµ

) 1
p

= ‖
N∑
fj‖p ≤

N∑
‖fj‖p =

∑(∫
|fj|p

) 1
p

should provide some perspective.

Proof. For 1 ≤ p < ∞, item (b) follows easily from item (a). For p = ∞, item (b) is

immediate. To prove (a), note that the result is just Tonelli’s theorem when p = 1. For

the case 1 < p < ∞, if the right-hand side of (
eqn:minkowski-a
52) is infinite, there is nothing to prove.

Assuming this right hand side is finite, let h(x) =
∫
f(x, y) dν(y) and fix g ∈ Lq(µ)

where q is the conjugate index to p. By Tonelli and Hölder,

∫
h(x)|g(x)| dµ(x) =

∫∫
f(x, y)|g(x)| dµ(x)dν(y)

≤

[∫ [∫
f(x, y)p dµ(x)

]1/p

dν(y)

]
‖g‖q.
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Thus the linear functional λ : Lq(µ)→ C given by λ(g) =
∫
hg dµ is bounded on Lq(µ)

with norm at most ∫ [∫
f(x, y)p dµ(x)

]1/p

dν(y).

By Theorem
thm:Lp-dual
24.13, it follows that h ∈ Lp(µ) and obeys the estimate (

eqn:minkowski-a
52). �

There are many important linear operators on Lp spaces arise as integral operators

in the sense that they are expressible in the form

Tf(x) =

∫
K(x, y)f(y) dν(y). (53) eqn:basic-integral-operator

The next proposition gives a simple sufficient condition for the boundedness of such an

operator on Lp. It is a special case of a more general criterion known as the Schur test.

prop:young-ineq Proposition 24.25 (Young’s inequality). Let µ, ν be σ-finite positive measures on spaces

X, Y respectively and let K(x, y) be a jointly measurable funciton on X × Y . Suppose

there is a constant C so that

sup
x∈X

∫
Y

|K(x, y)| dν(y) ≤ C, sup
y∈Y

∫
X

|K(x, y)| dµ(x) ≤ C.

If f ∈ Lp(ν), 1 ≤ p ≤ ∞, then, for almost every x, K(x, y)f(y) ∈ L1(ν), the function

Tf defined by (
eqn:basic-integral-operator
53) is in Lp(µ) and

‖Tf‖p ≤ C‖f‖p.

Once again, the σ-finite hypothesis is used to invoke Tonelli’s Theorem.
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Proof. For p = 1 or p =∞, the proof is straightforward and left as an exercise. Suppose

1 < p <∞ and let q denote the conjugate index. The idea is to split K as K = K1/qK1/p

and apply Hölder’s inequality. Indeed,

∫
Y

|K(x, y)||f(y)| dν(y) ≤
(∫

Y

|K(x, y)| dν(y)

)1/q (∫
Y

|K(x, y)||f(y)|p dν(y)

)1/p

≤ C1/q

(∫
Y

|K(x, y)||f(y)|p dν(y)

)1/p

.

Thus, by Tonelli there is a measurable function g(x) such that g(x) =
∫
K(x, y)f(y) dν(y)

almost everywhere µ. Further, by Tonelli’s theorem,

∫
X

|g(x)|p dµ(x) ≤ Cp/q

∫
X

(∫
Y

|K(x, y)||f(y)|p dν(y)

)
dµ(x)

= Cp/q

∫
Y

|f(y)|p
(∫

X

|K(x, y)| dµ
)
dν(y)

≤ C1+p/q

∫
Y

|f(y)|p dν(y)

= Cp‖f‖pp.

Hence g ∈ Lp(µ) and and taking pth roots finishes the proof. �

One context in which Young’s inequality is often used is the following: let X = Y =

Rn with Lebesgue measure, and fix a function g ∈ L1(Rn). If we put K(x, y) = g(x−y),

then for a measurable function f on Rn the function

Tf(x) :=

∫
Rn
g(x− y)f(y) dy
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is called the convolution of f and g, defined at each x where the integrand is L1. Usually

we write Tf = g ∗ f . From the translation invariance of Lebesgue measure,

sup
x∈Rn

∫
|g(x− y)| dy = sup

y∈Rn

∫
|g(x− y)| dx = ‖g‖1

so the hypotheses of Proposition
prop:young-ineq
24.25 are satisfied with C = ‖g‖1. We conclude

cor:young-ineq-convo Corollary 24.26 (Young’s inequality for convolutions). If g ∈ L1(Rn), f ∈ Lp(Rn),

1 ≤ p ≤ ∞, then g ∗ f ∈ Lp(Rn) and

‖g ∗ f‖p ≤ ‖g‖1‖f‖p.

24.6. Problems.

prob:generalized-holder Problem 24.1. Prove the generalized Hölder inequality (
eqn:generalized-holder
41). (Hint: consider F =

|f |r, G = |g|r.)

Problem 24.2. Suppose f, g ≥ 0 with f ∈ Lp, g ∈ Lq, 0 < p, q < ∞. Show that

equality holds in Hölder’s inequality (and the generalized Hölder inequality) if and only

if one the functions fp, gq is a scalar multiple of the other.

Problem 24.3. [Truncation of Lp functions] Suppose f is an unsigned function in Lp(µ),prob:lp-truncation

1 < p <∞. For t > 0 let

Et = {x : f(x) > t}.

a) Show that for each real number t > 0, the horizontal truncation 1Etf belongs to Lq

for all 1 ≤ q ≤ p.
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b) Show that for each real number t > 0, the vertical truncation ft := min(f, t)

belongs to Lq for all p ≤ q ≤ ∞.

c) As a corollary, show that every f ∈ Lp, 1 < p < ∞, can be decomposed as

f = g + h where g ∈ L1 and h ∈ L∞.

prob:lim-lp-norms Problem 24.4. Suppose f ∈ Lp0 ∩L∞ for some p0 <∞. Prove f ∈ Lp for all p0 ≤ p ≤

∞, and limp→∞ ‖f‖p = ‖f‖∞.

prob:Linfty-basics Problem 24.5. Prove fn → f in the L∞ norm if and only if fn → f essentially uni-

formly, and that L∞ is complete.

Problem 24.6. Suppose p0 < p < p1 and f ∈ Lp0 ∩ Lp1 . Prove f ∈ Lp and ‖f‖p ≤

‖f‖1−θ
p0
‖f‖θp1 , where 0 < θ < 1 is chosen so that 1

p
= 1−θ

p0
+ θ

p1
. When does equality hold?

Problem 24.7. [Containments of Lp spaces] a) Show that if µ is a finite measure, thenprob:lp-containment

Lp ⊂ Lq for all p ≥ q. b) Show that `p ⊃ `q for all p ≥ q. c) More generally, show

that Lp ⊂ Lq for all p ≥ q if and only if µ does not admit sets of arbitrarily large finite

measure, and Lp ⊃ Lq for all p ≥ q if and only if µ does not admit sets of arbitrarily

small positive measure.

Alternate version of the problem above. Let (X,M , µ) denote a measure space. If

1 ≤ r < p < ∞ and Lr(µ) ⊂ Lp(µ), then µ does not admit sets of arbitrarily small

positive measure; that is, there exists a δ > 0 such that if E ∈ M and µ(E) > 0,
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then µ(E) ≥ δ. [Suggestion: Apply the closed graph theorem to the inclusion map

ı : Lr → Lp.] Conversely, if µ does not admit sets of arbitrarily small measure, and

1 < r ≤ p <∞, then Lr(µ) ⊂ Lp(µ). As an example consider the `p spaces.

If Lp ⊂ Lq use closed graph to show the inclusion is continuous and hence bounded.

Get ‖1E‖p ≤ ‖ι‖‖1E|q etc. Could really be: if p > q and Lp ⊂ Lq then ... and conversely,

... . conversely: if doesn’t admit arbitrarily small: if finLr, then with En = f > n,

µ(En) converges to 0 hence is eventually 0, say µ(EM) = 0 and hence∫
|f |p =

∫
|f |r |f |p−r ≤Mp−r‖f‖r <∞.

prob:lp-no-containments-rn Problem 24.8. Show that Lp(Rn) 6⊂ Lq(Rn) for any pair p, q.

Problem 24.9. [Convergence in Lp norm] Prove, if fn → f in the Lp norm, then fn → f

in measure, and hence a subsequence converges to f a.e. Conversely, show that if fn → f

in measure and there exists a g ∈ Lp such that |fn| ≤ g for all n, then fn → f in the

Lp norm. (Hint: go back and look at the results in Section 12 in last semester’s notes,

especially Remark 12.18 and Corollary 12.19.)

prob:dual-of-linfty Problem 24.10. Consider L∞(R).

a) Show that M := C0(R) is a closed subspace of L∞(R) (more precisely, that

the set of L∞ functions that are a.e. equal to a C0 function is closed in L∞).

Prove there is a bounded linear functional λ : L∞ → K such that λ|M = 0 and

λ(1R) = 1.
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b) Prove there is no function g ∈ L1(R) such that λ(f) =
∫
R fg dm for all f ∈ L∞.

(Hint: look at the restriction of λ to C0(R).)

prob:dist-of-simples Problem 24.11. Prove Lemma
lem:dist-of-simples
24.18, and use it to carry out the calculation omitted

in the proof of Proposition
prop:dist-Lp-integral
24.21.

Problem 24.12. Prove, if f ∈ Lp then

lim
t→0

tpλf (t) = lim
t→∞

tpλf (t) = 0

(One way to proceed is to first suppose f is a simple function. Another is to consider

the integrals
∫ s
s
2
tp−1λf (t)dt.)

Problem 24.13. Prove the r =∞ case of the Marcinkiewicz interpolation theorem.

Problem 24.14. Prove the following more general form of Young’s inequality: suppose

p, q, r ≥ 1 satisfy 1
q

= 1
p

+ 1
r
− 1. Suppose K(x, y) satisfies

sup
x∈X
‖K(x, ·)‖Lr(ν) ≤ C, sup

y∈Y
‖K(·, y)‖Lr(µ) ≤ C

for some constant C. Prove, if f ∈ Lp(ν), then Tf =
∫
Y
K(x, y)f(y) dν(y) ∈ Lq(µ), and

‖Tf‖q ≤ C‖f‖p.

(Hint: use the same strategy of splitting |K| = |K|α|K|β, for a suitable choice of α+β =

1.)
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Deduce the following corollary for convolutions on Rn: with p, q, r as above, if

f ∈ Lp(Rn) and g ∈ Lr(Rn), then g ∗ f ∈ Lq(Rn) and

‖g ∗ f‖q ≤ ‖g‖r‖f‖p.
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25. The Fourier transform

We assume all functions are complex-valued unless stated otherwise.

Definition 25.1. [The Fourier transform] Let f ∈ L1(R). The Fourier transform of f

is the function cF0(f) = f̂ : R→ C defined at each t ∈ R by

f̂(t) :=

∫ ∞
−∞

f(x)e−2πitx dx. (54) eqn:fhat-def

/

Note that f̂ makes sense, since the integrand belongs to L1 for each t ∈ R. We

sometimes also use the phrase Fourier transform for the mapping that sends f to f̂ .

The basic properties of the Fourier transform listed in the following proposition stem

from two basic facts: first, that Lebesgue measure is translation invariant, and second

that, for each t ∈ R, the function

χt : x→ exp(2πitx)

is a character of the additive group (R,+). This means that χt is a homomorphism

from R into the mulitplicative group of unimodular complex numbers, explicitly for all

s, t ∈ R

χt(x+ y) = χt(x)χt(y).

Before going further we introduce some notation: for fixed y ∈ R and a function f :

R→ C, define fy(x) := f(x− y).
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prop:fourier-basic Proposition 25.2 (Basic properties of the Fourier transform). Let f, g ∈ L1(R) and

let α ∈ R.

(a) (Linearity) ĉf + g = cf̂ + ĝ

(b) (Translation) f̂y(t) = e−2πityf̂(t)

(c) (Modulation) If g(x) = e2πiαxf(x), then ĝ(t) = f̂(t− α)

(d) (Reflection) If g(x) = f(−x), then ĝ(t) = f̂(t).

(e) (Scaling) If λ > 0 and g(x) = f(x/λ) then ĝ(t) = λf̂(λt).

Proof. Each of these properties is verified by elementary transformations of the integral

defining f̂ ; the details are left as an exercise. �

It is immediate from the definition that f̂ is always a bounded function; indeed

|f̂(t)| ≤ ‖f‖1 for all t. Our next observation is:

prop:fourier-continuity Proposition 25.3. If f ∈ L1(R), then f̂ is continuous and bounded (f̂ ∈ Cb(R)) and

‖f̂‖∞ ≤ ‖f‖1. In particular, the mapping L1(R) 3 f 7→ f̂ ∈ L∞(R) is a bounded linear

map. Moreover if fn is sequence in L1 and fn → f in the L1 norm, then f̂n → f̂

uniformly.

Proof. Fix t ∈ R and a sequence tn → t. The sequence f(x)e−2πitnx converges to

f(x)e−2πitx pointwise on R, and since trivially |f(x)e−2πitnx| ≤ |f(x)| for all n, we have

by dominated convergence
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f̂(t) =

∫ ∞
−∞

f(x)e−2πitx dx

=

∫ ∞
−∞

lim
n→∞

[f(x)e−2πitnx] dx

= lim
n→∞

∫ ∞
−∞

f(x)e−2πitnx dx

= lim
n→∞

f̂(tn).

The second statement of the theorem follows immediately from the estimate supt∈R |f̂(t)| ≤

‖f‖1. �

In fact, f̂ always belongs to C0(R), this is known as the Riemann-Lebesgue Lemma.

To prove it we first need the following result, which we will apply often (recall the

notation fy(x) := f(x− y)):

lem:L1-translation Lemma 25.4 (Translation is continuous on Lp). If 1 ≤ p < ∞ and f ∈ Lp(R), then

limy→0 ‖fy − f‖p = 0.

Proof. First observe, if f ∈ Lp, the ‖fy‖p = ‖f‖p by translation invariance of Lebesgue

measure. Next, if g is continuous with compact support, then g ∈ Lp and is uniformly

continuous from which it readily follows that limy→0 ‖g−gy‖p = 0. Continuous functions

with compact support are dense in Lp. Thus, given f ∈ Lp and ε > 0 there is a continuous

function g with compact support such that ‖f − g‖p < ε. Hence,

‖f − fy‖p ≤ ‖f − g‖p + ‖g − gy‖p + ‖(g − f)y‖p < 2ε+ ‖g − gy‖p

and the result follows. �
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Note that the translation invariance of Lebesgue measure shows that the above

proposition implies a more general version of itself: if yn → y in R, then fyn → fy in Lp.

lem:RL Lemma 25.5 (The Riemann-Lebesgue Lemma). If f ∈ L1(R), then f̂ ∈ C0(R).

Proof. The proof is accomplished using the continuity of translation in L1 (Lemma
lem:L1-translation
25.4),

and a simple trick: first, since e−πi = −1, we can write

f̂(t) = −
∫ ∞
−∞

f(x)e−2πit(x+(1/2t)) dx = −
∫ ∞
−∞

f

(
x− 1

2t

)
e−2πixt dx.

Combining this identity with the usual definition of f̂ , we have

f̂(t) =
1

2

∫ ∞
−∞

(
f(x)− f

(
x− 1

2t

))
e−2πixt dx

so

|f̂(t)| ≤ 1

2
‖f − f 1

2t
‖1.

But by Lemma
lem:L1-translation
25.4, we have ‖f − f 1

2t
‖1 → 0 as t→ ±∞. �

Continuing our catalog of basic properties, we see that the Fourier transform also

interacts nicely with differentiation.

prop:mult-to-diff Proposition 25.6 (Multiplication becomes differentiation). Suppose f ∈ L1(R). If g(x) :=

xf(x) belongs to L1, then f̂ is differentiable for all t ∈ R, and ĝ(t) =
−1

2πi

d

dt
f̂(t).

The proof uses the standard estimate,

|1− eit| ≤ |t|

for t real and dominated convergence.
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Proof. Let s 6= t be real numbers; from the definition of f̂ we have

f̂(s)− f̂(t)

s− t
=

∫ ∞
−∞

e−2πisx − e−2πitx

s− t
f(x) dx. (55) eqn:fourier-diff-step0

Now the estimate ∣∣∣∣e−2πisx − e−2πitx

s− t

∣∣∣∣ ≤ 2π|x|

holds for all s 6= t, so by the assumption xf(x) ∈ L1 we can apply dominated convergence

in (
eqn:fourier-diff-step0
55) to take the limit as s→ t to obtain

lim
s→t

f̂(s)− f̂(t)

s− t
= lim

s→t

∫ ∞
−∞

e−2πisx − e−2πitx

s− t
f(x) dx

=

∫ ∞
∞

(−2πi)e−2πitxxf(x) dx

= −2πiĝ(t).

Thus f̂ is differentiable and the claimed formula holds. �

Note that if f ∈ L1 and also g(x) := xnf(x) ∈ L1 for some integer n ≥ 1, then

xkf(x) belongs to L1 for all 0 ≤ k ≤ n. The previous proposition can then be applied

inductively to conclude.

cor:mult-to-diff-higher Corollary 25.7. If f ∈ L1 and g := xnf ∈ L1, then f̂ is n times differentiable, and

x̂kf =

(
−1

2πi

)k
f̂ (k) for each 0 ≤ k ≤ n.

One would also expect a theorem in the opposite direction: the Fourier transform

should convert differentiation to multiplication by the independent variable. Under

reasonable hypotheses, this is the case.
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prop:diff-to-mult Proposition 25.8. If f ∈ C0(R) and f ′ is continuous and in L1, then

cF0(f ′)(t) = f̂ ′(t) = 2πitf̂(t).

Proof. Compute

f̂ ′(t) =

∫ ∞
−∞

f ′(x)e−2πitx dx

= lim
b→∞

∫ b

−b
f ′(x)e−2πitx dx

= lim
b→∞

(
[f(b)e−2πibt − f(−b)e2πibt] + 2πit

∫ ∞
−∞

f(x)e−2πixt dx

)
= 2πitf̂(t),

where the second equality follows from the Dominated Convergence Theorem, the third

using integration by parts, and the fourth from the C0(R) assumption on f . �

The last set of basic properties of the Fourier transform concern its interaction

with convolution, which we now introduce. If f, g are measurable functions on R, the

convolution of f and g is the function

(f ∗ g)(x) :=

∫ ∞
−∞

f(x− y)g(y) dy (56) eqn:convolution-def

defined at each x for which the integral makes sense. In particular, if f ∈ L∞ and

g ∈ L1, then f ∗ g is defined on all of R. Observe, using the invariance of Lebesgue

measure with respect to x→ −x and a simple change of variable,

f ∗ g(x) =

∫ ∞
−∞

g(x− y)f(y) dy = g ∗ f(x). (57) eq:convolution-alt

The next most basic fact about convolution is the following. (See Corollary
cor:young-ineq-convo
24.26.)
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prop:convo-L1 Proposition 25.9. If f, g ∈ L1(R), then

(a) f ∗ g is defined for almost every x ∈ R;

(b) f ∗ g is measurable;

(c) f ∗ g ∈ L1(R); and

(d) ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1.

Proof. LetH(x, y) = f(x−y)g(y). One may check (exercise) thatH is jointly measurable

as a function of x and y. By Tonelli

∫∫
|H(x, y)| dxdy =

∫ ∞
−∞
|g(y)|

(∫ ∞
−∞
|f(x− y)| dx

)
dy

= ‖f‖1

∫ ∞
−∞
|g(y)| dy

= ‖f‖1‖g‖1

where we have used the translation invariance of Lebesgue measure in the second equal-

ity. Hence H is in L1(R2). Thus by Fubini,
∫∞
−∞ |f(x− y)g(y)| dy =

∫∞
−∞ |H(x, y)| dy is

finite for almost every x ∈ R and L1(R) and further f ∗ g is defined almost everywhere

and L1 and moreover,

|f ∗ g(x)| ≤
∫ ∞
−∞
|H(x, y)| dy.

Hence,

∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

f(x− y)g(y) dy

∣∣∣∣ dx ≤ ∫∫ |H(x, y)| dydx = ‖f‖1‖g‖1.

�
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The following basic properties of convolution are immediate. Its proof is left as an

exercise.

prop:convolution-basics Proposition 25.10. Let f, g, h ∈ L1(R).

a) (Commutativity) f ∗ g = g ∗ f .

b) (Associativity) (f ∗ g) ∗ h = f ∗ (g ∗ h).

c) (Distributivity) (f + g) ∗ h = f ∗ g + f ∗ h.

d) (Scalar multiplication) If c ∈ C, then (cf) ∗ g = c(f ∗ g).

Notice that these properties together say that, if we equip L1(R) with the usual

addition of functions and treat convolution as multiplication, then L1(R) becomes a

commutative ring. (In fact it has even more structure, that of a Banach algebra, but

we will not pursue this direction in this course). We can now describe how convolution

behaves under the Fourier transform.

prop:convo-mult Proposition 25.11 (Convolution becomes multiplication). Let f, g ∈ L1(R). Then f̂ ∗ g(t) =

f̂(t)ĝ(t).
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Proof. By virtue of Proposition
prop:convo-L1
25.9 the function G(x, y) = f(x − y)g(y)e−2πxt is in

L1(R2) and thus we can use Fubini’s theorem to compute f̂ ∗ g(t):

f̂ ∗ g(t) =

∫ ∞
−∞

(∫ ∞
−∞

f(x− y)g(y) dy

)
e−2πixt dx

=

∫ ∞
−∞

g(y)

(∫ ∞
−∞

f(x− y)e−2πixt dx

)
dy

=

∫ ∞
−∞

f̂(t)e−2πiytg(y) dy

= f̂(t)ĝ(t)

where we have used Proposition
prop:fourier-basic
25.2(b). �

Given what we have proved so far, it follows that the Fourier transform is a ring

homomorphism from L1(R) (with addition and convolution) to C0(R) (with pointwise

addition and multiplication). We will see later that the Fourier transform is injective.

It turns out that it is not surjective, however.

Let us finish this section by computing an important example. Let a > 0 and

consider the Gaussian

g(x) := e−πax
2

.

(The factor of π will be convenient given our choice of normalization in the definition of

the Fourier transform.) It should be clear that xng(x) ∈ L1 for all a > 0 and n ≥ 0.

lem:fourier-transform-gaussian Lemma 25.12. ĝ(t) = 1√
a
e−πt

2/a.

Proof. Rather than computing the integral directly, we exploit Propositions
prop:mult-to-diff
25.6 and

prop:diff-to-mult
25.8. We may also assume a = 1 since the general case follows from this by scaling
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(Proposition
prop:fourier-basic
25.2(e)). Let h = xg and note that g′ = −2πh. Since h ∈ L1,

(ĝ)′(t) = −2πiĥ(t)

= −2πi
̂

(− 1

2π
g)′

= i2πitĝ(t)

= −2πtĝ(t),

(58) eq:ftgauss

where the first equality follows from Proposition
prop:mult-to-diff
25.6, the second from g′ = −2πh and

the third from Proposition
prop:diff-to-mult
25.8. It follows from equation (

eq:ftgauss
58) and the product rule that

d

dt
(eπt

2

ĝ(t)) = 0.

Hence the function eπt
2
ĝ(t) is constant. To evaluate the constant, we set t = 0 and use

the well-known Gaussian integral

ĝ(0) =

∫ ∞
−∞

e−πx
2

dx = 1.

�

25.1. Digression - convolution and approximate units. In this section we pause

to develop further properties of convolutions; these will be necessary in order to study

the Fourier inversion problem later.

A general principle is that the convolution of two functions inherits the best proper-

ties of both. We will see a number of instances of this phenomenon. A simple expression

of this principle is the following:

Proposition 25.13. If f ∈ L∞ and g ∈ L1, then then f ∗ g is bounded and continuous.



D
RA
FT

MAA6617 COURSE NOTES SPRING 2018 137

Proof. Since f is bounded,

|(f ∗ g)(x)| ≤
∫ ∞
−∞
|f(x− y)||g(y)| dy ≤ ‖f‖∞‖g‖1.

To see that f ∗ g is continuous, fix x ∈ R and let xn → x. Let hn(y) = [g(xn − y) −

g(x− y)] f(y). Since g ∈ L1 and f ∈ L∞, each hn ∈ L1 and

|g ∗ f(xn)− g ∗ f(x)| ≤ ‖hn‖1 ≤ ‖g−xn − g−x‖1 ‖f‖∞,

where gz(y) = g(y − z). The result now follow from continuity of translation in L1

(Lemma
lem:L1-translation
25.4) (and commutativity of the convolution). �

prop:convo-cpt-support Proposition 25.14. If f, g are L1 functions and are both compactly supported, then so

if f ∗ g.

Proof. Problem
prob:convo-cpt-support
25.3.

�

The dominated convergence argument can be extended to apply to differentiability:

prop:convo-diff Proposition 25.15. If f is a compactly supported Ck function (1 ≤ k ≤ ∞) and g ∈ L1,

then f ∗ g ∈ Ck.

Proof. First assume k = 1. Then one can differentiate under the integral sign as in the

proof of Proposition
prop:mult-to-diff
25.6 using uniform differentiability of f . The general case is proved

by induction; the details are left as an exercise. �
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def:approx-unit Definition 25.16. An L1 approximate unit is a collection of functions φλ ∈ L1(R)

indexed by λ > 0 such that:

a) φλ(t) ≥ 0 almost everywhere, for each λ,

b)
∫∞
−∞ φλ(t) dt = 1 for all λ, and

c) For each fixed δ > 0, we have ‖1|t|>δφλ‖1 → 0 as λ→ 0.

/

Approximate units are easy to construct: Let φ be any nonnegative, L1 function

with
∫∞
−∞ φ(x) dx = 1; then the functions φλ(x) := 1

λ
φ
(
x
λ

)
form an L1 approximate

unit (Problem
prob:scaled-approx-unit
25.5(a)). The simplest example comes from taking φ(x) = 1[−1/2,1/2]; the

resulting φλ is known as the box kernel. (Draw a few of these for different values of λ to

see what is going on.) Of course approximate units need not be compactly supported;

we will see a very important example later (the Poisson kernel). The significance of

approximate units (and their name) is explained by the following theorem.

thm:L1-approx-units Theorem 25.17. Let φλ be an L1 approximate identity. If 1 ≤ p <∞ and f ∈ Lp(R),

then for each λ the convolution f ∗ φλ is defined almost everywhere, f ∗ φλ ∈ Lp(R) and

‖φλ ∗ f − f‖p → 0 as λ→ 0.

To prove the theorem we need two facts. The first is Minkowski’s integral inequality

(Theorem
thm:minkowski
24.24). The second is the following lemma (which is really the heart of the

matter); note where each of the properties the approximate unit is used.
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lem:continuity-approx-unit Lemma 25.18. Suppose φλ is an L1 approximate unit and g ∈ L∞. If g is continuous

at a point x ∈ R, then

lim
λ→0

(g ∗ φλ)(x) = g(x).

Proof. Using the trick g(x) =
∫∞
−∞ φλ(y)g(x) dy,

(g ∗ φλ)(x)− g(x) =

∫ ∞
−∞

(g(x− y)− g(x))φλ(y) dy,

so using the positivity of φλ

|(g ∗ φλ)(x)− g(x)| ≤
∫ ∞
−∞
|g(x− y)− g(x)|φλ(y) dy (59) eqn:approx-unit-lemma-step

To estimate the right-hand side, let ε > 0 be given. By the continuity of g at x, choose

δ > 0 so that |g(x− y)− g(x)| < ε when |y| < δ. We then split the integral in (
eqn:approx-unit-lemma-step
59) into

two integrals, over the regions |y| ≤ δ and |y| > δ:

∫ ∞
−∞
|g(x−y)−g(x)|φλ(y) dy =

∫
{|y|≤δ}

|g(x−y)−g(x)|φλ(y) dy+

∫
{|y|>δ}

|g(x−y)−g(x)|φλ(y) dy.

The first integrand is bounded by εφλ, so

∫
{|y|≤δ}

|g(x− y)− g(x)|φλ(y) dy ≤ ε

∫
{|y|≤δ}

φλ(y) dy ≤ ε

since
∫∞
−∞ φλ(y) dy = 1. The second integrand is bounded by 2‖g‖∞1{|y|>δ}φλ(y), so goes

to 0 as λ → 0 by property (c) in the definition of approximate unit. This proves the

lemma. �
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Remark: If one assumes that the approximate unit φλ was constructed as φλ(y) =

1
λ
φ
(
y
λ

)
for some φ satisfying φ ≥ 0 and

∫
φ = 1, then the lemma has an easier proof (see

Problem
prob:scaled-approx-unit
25.5(b)).

Proof of Theorem
thm:L1-approx-units
25.17. Let f ∈ Lp be given. By Corollary

cor:young-ineq-convo
24.26 (or a routine argu-

ment), f ∗ φλ is defined for almost every x and is in Lp. Let dµ = dx denote Lebesgue

measure and dν the measure φλ(y)dy. Define F (x, y) = (fy − f)(x) = f(x− y)− f(x).

In particular, F (·, y) ∈ Lp(µ) and

‖F (·, y)‖p ≤ 2‖f‖p

for each x. Since ν is a finite measure, H(y) = ‖F (·, y)‖p is in L1(µ).

It follows from Theorem
thm:minkowski
24.24 that for ν-almost every x the function Gx(y) =

F (x, y) = f(x− y)− f(x) is in L1(ν),

gλ(x) =

∫ ∞
−∞

F (x, y)dν(y) =

∫ ∞
−∞

F (x, y)φλ(y) dy = (fy ∗ φλ − f)(x)

is in Lp(µ) with

‖gλ‖p ≤
∫ ∞
−∞
‖F (·, y)‖p dν =

∫ ∞
−∞
‖fy − f‖pφλ(y) dy.

Thus,

‖f ∗ φλ − f‖p ≤ h ∗ φλ(0),

where h(y) = ‖f−y − f‖p. Hence

‖fy ∗ φλ − f‖p = ‖gλ‖p ≤ h ∗ φλ(0). (60) eq:app1
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The function h belongs to L∞ (indeed ‖h‖∞ ≤ 2‖f‖p) and is continuous (by the conti-

nuity of translation in Lp) and h(0) = 0. Thus by Lemma
lem:continuity-approx-unit
25.18, the right hand side of

equation (
eq:app1
60) goes to 0 as λ→ 0 concluding the proof. �

It is often useful to have approximate units with additional properties, such as

smoothness or compact support. In fact it is possible to construct an L1 approximate

unit {ψλ} consisting of C∞ functions with compact support. This is accomplished via

bump functions:

Definition 25.19. A bump function is a function ψ : R→ R such that:

a) ψ ∈ C∞(R),

b) ψ is compactly supported,

c) ψ ≥ 0, and

d)
∫∞
−∞ ψ(x) dx = 1.

/

lem:bump-functions Lemma 25.20. Bump functions exist.

Proof. The main issue is to construct a C∞ function with compact support. Consider

the function

h(x) =

{
e−1/x if x > 0

0 if x ≤ 0

Clearly h ≥ 0 and h is differentiable for all x 6= 0; it is a calculus exercise to verify that

h is infinitely differentiable at 0 and h(n) = 0 for all n. It is then straightforward to
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verify that ψ(x) = c · h(x + 1)h(1 − x) is a bump function (for a suitable normalizing

constant c), supported on [−1, 1]. �

Note that if ψ is a bump function supported in [−1, 1], then the functions ψλ(x) :=

1
λ
ψ
(
x
λ

)
are also bump functions, supported in [−λ, λ]. (Draw a picture of what these

functions look like as λ→ 0). Thus there exist approximate units consisting of smooth,

compactly supported functions. As an application, we can prove that C∞c (R) is dense

in Lp(R) for all 1 ≤ p <∞. A proof is outlined in Problem
prob:smooth-dense-Lp
25.6.

25.2. Inversion and uniqueness. In this section we study the problem of recovering

f from f̂ . Loosely, the Fourier transform can be thought of as a resolution of f as a

superposition of sinusoidal functions e2πitx; the value of f̂(t) measures the “amplitude”

of f in the “frequency” t. This suggests that a formula like

f(x) =

∫ ∞
−∞

f̂(t)e2πitx dt (61) eqn:inversion-intro

ought to hold, at least if f̂ ∈ L1. If we formally substitute the definition of f̂ and switch

the order of integration, we are confronted with

∫ ∞
−∞

f(u)

(∫ ∞
−∞

e2πi(x−u)t dt

)
du

and the inner integral is not convergent, regardless of any assumption on f̂ . In fact (
eqn:inversion-intro
61)

does hold when f̂ ∈ L1, but a more delicate argument is necessary. So, the goal of this

section will be to prove:
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thm:L1-inversion Theorem 25.21 (Fourier inversion, L1 case). If f and f̂ belong to L1, then

f(x) =

∫ ∞
−∞

f̂(t)e2πixt dt (62) eqn:L1-inversion

for almost every x ∈ R.

Once we have the inversion formula, we see that L1 functions are determined by

their Fourier transforms:

Corollary 25.22. Suppose f, g ∈ L1. If f̂ = ĝ, then f = g a.e.

Proof. From the inversion theorem, if f ∈ L1 and f̂ = 0, then f = 0. By the linearity of

the Fourier transform, f̂ − g = f̂ − ĝ, and the corollary follows. �

So, in principle, f is fully determined by f̂ , even if f̂ /∈ L1; and this is often the

case. For example, for a > 0 the Fourier transform f = 1[−a,a] is

f̂(t) =
sin(2πat)

πt

and an exercise shows f̂ does not belong to L1. To recover f from f̂ in these cases,

we turn to summability methods; in fact summability methods will already be of use in

proving the inversion theorem. The idea is this: suppose we have a divergent integral∫ ∞
−∞

h(t) dt

where the function h is, say, locally L1, but not L1. We might try to make sense of the

integral as

lim
a→+∞

∫ a

−a
h(t) dt,
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effectively we have introduced the cutoff function ψa(t) := 1[−a,a], which is positive,

integrable, and increases to 1 pointwise as a → ∞. Given any family of functions ψa

with these three propertes, we can consider the integrals∫ ∞
−∞

h(t)ψa(t) dt.

The “square”cutoff 1[−a,a] has some undesirable properties; e.g., its Fourier transform is

not L1 (and not of constant sign). We will work first with smoother cutoff functions, in

particular the functions t → exp(−a|t|) (here we consider a → 0 rather than a → ∞,

but this is not important).

The first step is to compute the (inverse) Fourier transform of

Qa(t) = e−2aπ|t| (63) def:Qsuba

(the extra factor of 2π turns out to be a convenient normalization).

lem:poisson-computation Lemma 25.23. For all a > 0,∫ ∞
−∞

Qa(t)e
2πitx dt =

1

π

a

a2 + x2
.

Proof. Problem
prob:poisson-computation
25.7.

�

Let us fix the notation

Pa(x) :=
1

π

a

a2 + x2
(64) eqn:poisson-def

Notice that P1(x) is nonnegative and
∫∞
−∞ P1(x) dx = 1. Moreover, Pa(x) = 1

a
P1(x

a
). By

the remarks following Definition
def:approx-unit
25.16, we have:
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lem:Pappx Lemma 25.24. {Pa}a>0 is an L1 approximate unit.

The function Pa(x) (viewed as a function of the two arguments (a and x) is known

as the Poisson kernel. We are now able to compute the integral (
eqn:inversion-intro
61) modified by the

cutoff function Qa(t):

prop:poisson-convolution Proposition 25.25. If f ∈ L1, then for all a > 0 and all x ∈ R

(f ∗ Pa)(x) =

∫ ∞
−∞

Qa(t)f̂(t)e2πitx dt.

Proof. For a > 0 and x fixed, let Gx(t, y) = Qa(t)f(y)e−2π(x−y)t. Observe that∫
|Ga(t, y)|dydt = ‖f‖1 ‖Qa‖1 =

‖f‖1

πa
.

Thus Ga is L1(R2) and hence we can apply Fubini (explaining the role of the cut-off

function Qa) ∫ ∞
−∞

Qa(t)f̂(t)e2πix dt =

∫ ∞
−∞

Qa(t)

∫ ∞
−∞

f(y)e2πi(x−y)t dy dt (65)

=

∫ ∞
−∞

Qa(t)

∫ ∞
−∞

f(x− y)e2πiyt dy dt (66)

=

∫ ∞
−∞

f(x− y)

∫ ∞
−∞

Qa(t)e
2πiyt dt dy (67)

= (f ∗ Pa)(x). (68)

�

Proof of Theorem
thm:L1-inversion
25.21. Assume f, f̂ ∈ L1(R). Define

g(x) =

∫ ∞
−∞

f̂(t)e2πitx dt.
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By the Riemann-Lebesgue lemma (Lemma
lem:RL
25.5), g ∈ C0(R). We want to show g = f

a.e. From Proposition
prop:poisson-convolution
25.25 for all a > 0

(f ∗ Pa)(x) =

∫ ∞
−∞

Qa(t)f̂(t)e2πitx dt. (69) eqn:inversion-step

Fix a sequence an → 0. Using the hypothesis f̂ ∈ L1, an application of dominated

convergence shows, for all x, the integral in the right-hand side of (
eqn:inversion-step
69) converges to

g(x) as an → 0. On the other hand, since Pa is an L1 approximate unit, we know from

Theorem
thm:L1-approx-units
25.17 that f ∗ Pan → f in L1. Passing to a subsequence, we may assume that

f ∗ Pan → f almost everywhere, but then by (
eqn:inversion-step
69) we have f ∗ Pan → g a.e., so f = g

a.e. and the theorem is proved. �

Remark 25.26. Observe that the above proof did not really use the explicit form of

Pa; rather the point was that Qa(t) = {e−2aπ|t|}a>0 was a cutoff function (uniformly

bounded and converging pointwise to the constant function 1) whose Fourier transform

{Pa} was an L1 approximate unit. Any other cutoff function with this property could

have been used. �

Another corollary of Proposition
prop:poisson-convolution
25.25 is that we can recover f from f̂ in a weaker

sense for any f ∈ L1 (that is, not assuming f̂ ∈ L1). Indeed, combining Proposition
prop:poisson-convolution
25.25

and Theorem
thm:L1-approx-units
25.17 we have immediately:

Corollary 25.27 (Fourier inversion in the L1 norm). If f ∈ L1, then∫ ∞
−∞

Qa(t)f̂(t)e2πixt dt (70) eqn:regularized-inversion
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converges to f in the L1 norm as a→ 0+.

So, we can recover f but only in the L1 norm; the corollary does not say anything

about the pointwise covergence of the reguralized integrals. In fact, it is true that the

integrals (
eqn:regularized-inversion
70) converge to f a.e., but this requires a more delicate argument.

25.3. The L2 theory. In this section we study the Fourier transform on L2. There is

an immediate problem, of course, since by Problem
prob:lp-no-containments-rn
24.8 L2 6⊂ L1, so the integral (

eqn:fhat-def
54)

need not be defined. However, we can observe that L1 ∩ L2 is dense in L2 (why?), and

start there.

lem:plancherel Lemma 25.28. If f ∈ L1 ∩ L2, then f̂ belongs to L2 and ‖f̂‖2 = ‖f‖2.

Proof. Let f̃(x) := f(−x). Since f, f̃ ∈ L1, the convolution g = f ∗ f̃ is defined a.e. and

g ∈ L1 by Proposition
prop:convo-L1
25.9. Now

g(x) =

∫ ∞
−∞

f(x− y)f(−y) dy =

∫ ∞
−∞

f(x+ y)f(y) dy.

Thus g(x) = 〈f−x, f〉L2 . By Lemma
lem:L1-translation
25.4, the map x → f−x is continuous from R into

L2 and of course the vector f determines a continuous linear functional. Thus g is a

continuous function of x, and g(0) = ‖f‖2
2. By Cauchy-Schwarz again,

|g(x)| ≤ ‖f−x‖2 ‖f‖2 = ‖f‖2
2,

so g is bounded.
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Let, as before Qa(t) = exp(−2aπ|t|). Since g ∈ L1 we can apply Proposition
prop:poisson-convolution
25.25

to compute

(g ∗ Pa)(0) =

∫ ∞
−∞

Qa(t)ĝ(t) dt.

As g is continuous, by Lemma
lem:continuity-approx-unit
25.18

‖f‖2
2 = g(0) = lim

a→0
(g ∗ Pa)(0) = lim

a→0

∫ ∞
−∞

Qa(t)ĝ(t) dt. (71) eqn:plancherel-step

Let us compute the limit of this last integral in a different way. Recall that by

definition g = f ∗ f̃ , so by Propositions
prop:convo-mult
25.11 and

prop:fourier-basic
25.2(d),

ĝ(t) = |f̂(t)|2.

Making this substitution in the integral in (
eqn:plancherel-step
71) and applying the monotone convergence

theorem,

‖f‖2
2 = lim

a→0

∫ ∞
−∞

Qa(t)ĝ(t) dt = lim
a→0

∫ ∞
−∞

Qa(t)|f̂(t)|2 dt = ‖f̂‖2
2.

�

thm:fourier-L2 Theorem 25.29 (The Fourier transform on L2). There is a unique bounded linear trans-

formation F : L2 → L2 satisfying the following conditions:

a) For all f ∈ L1 ∩ L2, Ff = f̂ .

b) (The Plancherel theorem) ‖Ff‖2 = ‖f‖2 for all f ∈ L2.

c) The mapping f → Ff is an Hilbert space isomorphism of L2 onto L2.

d) (The Parseval identity) 〈f, g〉 = 〈Ff,Fg〉 for all f, g ∈ L2.
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Remark: Note that when f, g ∈ L1 ∩ L2, the Parseval identity reads

∫ ∞
−∞

f(x)g(x) dx =

∫ ∞
−∞

f̂(t)ĝ(t) dt.

Proof of Theorem
thm:fourier-L2
25.29. By Lemma

lem:plancherel
25.28, the map f → f̂ is bounded linear transfor-

mation from a dense subspace of L2 into L2. Thus, since the codomain L2 is complete,

by Proposition
prop:extending-bounded-operators
20.9 the map f → f̂ has a unique bounded linear extension to a map

F : L2 → L2. This proves (a), and (b) follows since ‖f‖2 = ‖Ff‖2 on a dense set

(namely L1 ∩ L2). (d) is also an immediate consequence of (b), by Problem
prob:hilby-isometries
23.3(a). It

remains to prove (c); what we must show is that F is onto.

We show that F has dense range; combined with the fact that F is an isometry, it

follws that F is in fact onto. (The proof of this last assertion is left as an exercise). Let

M denote the set of all functions g ∈ L2 such that g = f̂ for some f ∈ L1 ∩ L2. Clearly

the range of F contains M , so it will suffice to prove that M is dense, or equivalently,

that M⊥ = {0}.

Recall the cutoff functions Qa(x) = e−2aπ|x|, a > 0 introduced in equation (
def:Qsuba
63).

The functions e2πibxe−2aπ|x| belong to L1 ∩ L2 for all a > 0 and b ∈ R, so their Fourier

transforms

Pa(t− b) =

∫ ∞
−∞

e2πibxQa(x) e−2πitx dx

belong to M . So, let h ∈M⊥ be given and let H(x) = h(−x). Thus,

(Pa ∗H)(−b) =

∫ ∞
−∞

Pa(−b− t)h(−t) dt =

∫ ∞
−∞

Pa(t− b)h(t) dt = 0
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for all b. Since, by Lemma
lem:Pappx
25.24, Pa is an approximate unit and H ∈ L2, Theorem

thm:L1-approx-units
25.17

implies Pa ∗H converges to H in L2. Hence h = 0 and consequently M is dense in L2

and the proof is finished. �

thm:L2-inversion Theorem 25.30 (L2 inversion). Let f ∈ L2. Define

φN(t) =

∫ N

−N
f(x)e−2πixt dx, ψN(t) =

∫ N

−N
(Ff)(t)e2πixt dt.

Then ‖φN −Ff‖2 → 0 and ‖ψN(t)− f‖2 → 0 as N →∞.

Proof. Let fN := 1[−N,N ]f . Then fN ∈ L1 ∩ L2, and φN = f̂N . An application of

dominated convergence shows that (fN)N converges to f in the L2 norm. Hence, (φN =

f̂N = FfN)N converges in L2 to Ff by Theorem
thm:fourier-L2
25.29.

The statement for ψN is proved by similar methods and is left as an exercise (Prob-

lem
prob:L2-inversion
25.10). �

It is important to note that, for a general function f ∈ L2, its Fourier transform

is defined only as an element of L2. In particular it is defined only a.e., and cannot

be evaluated at points. From now on we just write f̂ for Ff when f ∈ L2, with the

understanding that the integral definition is only valid when f ∈ L1 ∩ L2.

25.4. Fourier Series. We now replace the group (R,+) with the multiplicative group

of unimodular complex numbers

T = {eiθ : −π ≤ θ < π} ⊂ C.
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By the properties of the exponential, this group isomorphic to the group [−π, π) with

addition mod 2π. (This amounts to the isomorphism of the quotient group R/2πZ ∼= T.)

We will typically use θ to identify elements of T. We will treat functions f : T → C

either as functions on the unit circle in C, or, when convenient, as functions on the

interval [−π, π) extended 2π-peridoically to R. For each integer n, the map

χn : eiθ → einθ

is a homomorphism from T to T. In fact, any continuous homomorphism h : T → C is

χn for some n ∈ Z.

We equip T with normalized arc length measure, or equivalently normalized Lebesgue

measure on [−π, π). We write dm for this measure. Note that T acts on itself by rotation.

For fixed θ, the map τθ : T→ T given by

τθ(e
iψ) = ei(ψ+θ)

amounts to rotation of the circle through the angle θ. Moreover, m is invariant under τθ

for each θ. Arguing exactly as on the line, one can prove the continuity of translation

in Lp(T). For fixed ϕ ∈ [−π, π), let fϕ(θ) = f(θ − ϕ).

prop:lp-translation-cns-circle Proposition 25.31. If 1 ≤ p < ∞ and f ∈ Lp(T), then the mapping R → Lp(T)

defined by ϕ 7→ fϕ is continuous.

Now that we have a translation invariant measure and the characters χn, we can

define a Fourier transform.
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Definition 25.32. Let f ∈ L1(T). The Fourier coefficients of f are the numbers

f̂(n) :=

∫
T
f(θ)e−inθ dm(θ) =

1

2π

∫ π

−π
f(x)e−inx dx, n ∈ Z.

The Fourier series of f is the series

f ∼
∞∑

n=−∞

f̂(n)einθ. (72) eqn:fourier-series-def

/

The function f̂ : Z→ C is called the Fourier transform of f . The Fourier coefficients

f̂(n) are the analogs of the pointwise values of f̂(t) in the case of R. Thus, in each case

the Fourier transform of a function f is a function defined on the (group of) characters.

Similarly, the (possibly divergent) Fourier series is the analog of the (possibly divergent)

integral ∫ ∞
−∞

f̂(t)e2πitx dt.

Just as in the case of the real line, the Fourier transform behaves predictably under

translation, modulation, reflection, and scaling; we leave the statements and proofs of

these facts as exercises. Moreover the same kind of integral estimates show that f̂ is

always a bounded function.

thm:riemann-leb-circle Theorem 25.33 (Riemann-Lebesgue lemma on the circle). If f ∈ L1(T), then

lim
n→±∞

|f̂(n)| = 0.
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This version of the Riemann-Lebesgue Lemma follows readily from the version on R

(Lemma
lem:RL
25.5). In other words, the Fourier transform takes L1(T) into c0(Z). As in the

case of the line, this map turns out to be injective (which will follow from an appropriate

inversion theorem), but not surjective. Also, as we found on the line, typically f̂ /∈ `1(Z).

Thus, there is an immediate difficulty in interpreting the series (
eqn:fourier-series-def
72)

As before, the basic problem is to recover f from f̂ , which in turn means finding a

way to attach meaning to the (in general divergent) Fourier series. Broadly, the method

is the same as in the case of R: we introduce a cutoff function whose Fourier series is

nicely convergent to an approximate unit for L1(T). Before doing this we have a look

at what can go wrong, even for nice f . Let us try to naively sum the Fourier series: fix

f ∈ L1(T) and consider the partial sums

sN(θ) =
N∑

n=−N

f̂(n)einθ.

Since this is a finite sum, we can expand f̂ as an integral and pull the sum inside:

sN(θ) =

∫
T
f(φ)

{
N∑

n=−N

e−inφeinθ

}
dm(φ). (73) eqn:dirichlet-convo-step

Working with the inner sum, we consider the expression

DN(t) :=
N∑

n=−N

eint =
sin
(
N + 1

2

)
t

sin t
2

Then (
eqn:dirichlet-convo-step
73) can be written

sN(θ) =

∫
T
f(φ)DN(θ − φ) dm = (f ∗DN)(θ)
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where we have introduced convolution on the circle group T. (Note that the difference

θ − φ is interpreted in the group T, that is, is carried out mod 2π.) Thus, the question

of whether the partial sums sN converge to f in some sense (pointwise a.e., or in L1,

etc.) reduces to the question of whether f ∗ DN converges to f in the same sense.

Unfortunately, since DN is not an L1(T) approximate unit, the partial sums sN can be

badly behaved, even for nice f . For example we have the following:

thm:fourier-divergence Theorem 25.34. There exists a continuous function f on T such that the Fourier series

for f diverges at θ = 0.

Proof. We present an outline of the proof; the details are left as an exercise. As noted

above, the N th partial sum of the Fourier series of f at a point θ is given by (f ∗DN)(θ).

We suppose that (f ∗ DN)(0) → f(0) for every f ∈ C(T) and derive a contradiction.

Now

sN(0) = (f ∗DN)(0) =

∫
T
f(φ)DN(φ) dm(φ).

By the construction of DN , it is clear that DN ∈ L1(T) for each N . Thus for each

N the map LN : f →
∫
T fDN dm is a bounded linear functional on C(T), and one

can show that the norm of this functional is equal to ‖DN‖1. (To see this, find a

sequence of continuous functions gn such that ‖gn‖∞ ≤ 1 for all n and gn → sgnDN

pointwise. Then |LN(gn)| → ‖DN‖1.) Next, one can show by direct estimates of the

integral that ‖DN‖1 →∞ as N →∞. The proof finishes by appeal to the Principle of

Uniform Boundedness: if it were the case that LN(f) = sN(0)→ f(0) for all f ∈ C(T),
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then the family of linear functionals LN would be pointwise bounded on C(T), hence

uniformly bounded, which is a contradiction. Problem
prob:fourier-divergence
25.17 gives some hints on filling

the details. �

Before going further, let us observe that if we assume f has a certain amount of

smoothness at a point, then the Fourier series for f will converge to f at that point. A

simple result of this type is the following:

Proposition 25.35. If f ∈ L1(T) and f is differentiable at a point θ0, then sN(θ0) →

f(θ0).

Proof. By considering real and imaginary parts, we may assume f is real-valued, and

by replacing f(θ) by f(θ+ θ0)− f(θ0) we may assume that θ0 = 0 and f(0) = 0. As we

have already observed, we have

sN(0) = (f ∗DN)(0) =
1

2π

∫ π

−π
f(φ)DN(φ) dφ (74) eqn:diff-summability-step

=
1

2π

∫ π

−π
f(φ)

sin
(
N + 1

2

)
φ

sin φ
2

dφ, (75)

and we wish to prove sN(0)→ 0 as N →∞. The key observation is that the function

g(φ) =
f(φ)

sin φ
2

belongs to L1(T). To see this, first note the elementary estimate

| sin φ
2
| ≤ |φ|

2
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for |φ| ≤ π
2

and that there is an 0 < η ≤ π
2

such that

| sin φ
2
| ≥ |φ|

π

for |φ| < η.

Now, since f is differentiable at 0 and f(0) = 0, there exist M > 0 and 0 < δ < η

such that

sup
|φ|<δ

∣∣∣∣f(φ)

φ

∣∣∣∣ ≤M,

so

|g(φ)| =
∣∣∣∣f(φ)

φ

∣∣∣∣
∣∣∣∣∣ φ

sin φ
2

∣∣∣∣∣ ≤ πM.

for |φ| ≤ δ. On the other hand, for δ < |φ| ≤ π,∣∣∣∣∣f(φ)

sin φ
2

∣∣∣∣∣ ≤ π

δ
|f(φ)|.

Thus, g is bounded near 0 and dominated by f away from 0, hence g ∈ L1. Returning

to (
eqn:diff-summability-step
74), we have

sN(0) =
1

2π

∫ π

−π
g(φ) sin

(
N +

1

2

)
φ dφ

Making the change of variable θ = φ/2 gives

sN(0) =
1

π

∫ π/2

−π/2
g(2θ) sin((2N + 1)θ) dθ (76) eqn:diff-convergence-step2

If we now put

h(θ) = 21[−π/2,π/2](θ)g(2θ),

then h ∈ L1 and the integral in (
eqn:diff-convergence-step2
76) is nothing but the imaginary part of ĥ(2N+1), which

goes to 0 as N →∞ by the Riemann-Lebesgue lemma. This finishes the proof. �
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So, to recover f from its Fourier series, as before we need to introduce a cutoff

function, but since the “square” cutoff 1[−N,N ] (corresponding to ordinary partial sums)

is badly behaved, we choose a smoother cutoff. It turns out that the functions

n→ r|n|

for 0 ≤ r < 1 are a good choice (analgous to e−aπ|t| on the line). Thus we consider the

Abel means of the Fourier series

A(r, θ) :=
∞∑

n=−∞

f̂(n)r|n|einθ.

Since f̂ is bounded and r < 1, this series is absolutely convergent for all θ, and unifomrly

convergent on T for each fixed r. Thus, we can again expand f̂ as an integral, and

interchange the sum and integral:

A(r, θ) =

∫
T
f(φ)

{
∞∑

n=−∞

r|n|ein(θ−φ)

}
dm(φ) := (f ∗ Pr)(θ)

where, by summing the geometric series, Pr(θ) is given by

Pr(θ) :=
∞∑

n=−∞

r|n|einθ =
1− r2

1− 2r cos θ + r2
.

The function Pr(θ) is the Poisson kernel.

lem:poisson-approx-unit-T Lemma 25.36. The family of function Pr has the following properties.

i) Pr(θ) ≥ 0 for all θ ∈ [−π, π] and all 0 ≤ r < 1,

ii) For each r,
∫
T Pr(θ) dm(θ) = 1,
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iii) For each fixed 0 < δ < π,

1

2π

∫
δ≤|θ|≤π

Pr(θ) dθ → 0 as r → 1.

Proof. Exercise. �

In other words, {Pr}r<1 is an L1(T) approximate unit. Just as on the line, we have

Theorem 25.37. If 1 ≤ p <∞ and f ∈ Lp(T), then ‖f ∗ Pr − f‖p → 0 as r → 1.

Proof. A proof can be constructed using the properties of approximate units and Minkowski’s

integral inequality (Theorem
thm:minkowski
24.24) in the same way as R. It is an exercise to fill in the

details. �

With these results in hand, we can obtain Abel summability of Fourier series on the

circle:

Corollary 25.38. If f ∈ Lp(T), 1 ≤ p <∞, then the Abel means A(r, θ) of the Fourier

series for f converge to f in Lp as r → 1. In particular, the set E = {en = einθ : n ∈

Z} ⊂ L2([−π, π]) is an orthonormal basis of L2([−π, π]).

Proof. The first part of the Corollary is immediate. For the second part, note E is an

orthonormal set (we are using normalized Lebesgue measure on [−π, π]. Further, if f is

orthogonal to E, then its Abel means are 0 and hence f = 0. �

Just as with the Fourier transform, there is an inversion principle. In the context of

Fourier series it is L1−`1 inversion. First observe, if f ∈ L1 and f̂ = 0, then Af (r, θ) = 0
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converges to f in L1. Hence f = 0. Thus, if f, g ∈ L1 and f̂ = ĝ, then f = g. Finally, if

f ∈ L1 and f̂ ∈ `1(Z), then the series

g =
∑

f̂(n)einθ

converges uniformly to a continuous (and hence L1(T)) function g and ĝ(n) = f̂(n) by

direct computation. Thus g = f (as L1 functions).

What happens when p = ∞? We have already seen that the Fourier series of

a continuous function can diverge at a given point; however if we use the Abel means

A(r, θ) we can do better. The reason is the following lemma, which says that the Poisson

kernel Pr(θ) obeys a stronger condition than that of Lemma
lem:poisson-approx-unit-T
25.36:

Lemma 25.39. For each 0 < δ < π, we have Pr(θ) → 0 uniformly on δ ≤ |θ| ≤ π as

r → 1.

Proof. Fix δ. For δ < |θ| ≤ π, we have −1 ≤ cosθ ≤ cosδ < 1. Thus for such θ

Pr(θ) =
1− r2

1− 2r cos θ + r2
≤ 1− r2

1− 2r cos δ + r2
.

As r → 1, the numerator of this last expression goes to 0 while the denominator is

bounded away from 0, which proves the lemma. �

Theorem 25.40. If f ∈ C(T), then f ∗ Pr = A(r, θ)→ f(θ) uniformly as r → 1.

Proof. Fix f ∈ C(T) and ε > 0. Since f is continuous and T is compact, f is uniformly

continuous, so there exists δ > 0 such that |f(θ)−f(φ)| < ε whenever |θ−φ| < δ. Using
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our usual tricks with approximate units we write f(θ) =
∫
f(θ)Pr(φ)dφ to obtain

|(f ∗ Pr)(θ)− f(θ)| ≤ 1

2π

∫ π

−π
|f(θ − φ)− f(θ)|Pr(φ) dφ.

We split the integral as
∫
|φ|<δ +

∫
δ<|φ|≤π. For the first integral, we have |f(θ−φ)−f(θ)| <

ε for |φ| < δ by uniform continuity, so

1

2π

∫
|φ|<δ
|f(θ − φ)− f(θ)|Pr(φ) dφ < ε

1

2π

∫ π

−π
Pr(θ) = ε.

For the second integral, for all r sufficiently large we have Pr(θ) < ε on δ < |φ| ≤ π by

the lemma, while |f(θ − φ)− f(θ)| ≤ 2‖f‖∞, so

1

2π

∫
δ<|φ|≤π

|f(θ − φ)− f(θ)|Pr(φ) dφ ≤ 2ε‖f‖∞.

Thus for r sufficiently close to 1, we get |f ∗Pr(θ)− f(θ)| ≤ (1 + 2‖f‖∞)ε, so f ∗Pr → f

unifomrly on T. �

From the smoothing properties of convolution, we see that if f ∈ L1 then f ∗ Pr is

continuous in θ for each r. Thus there is no hope that f ∗Pr → f in the L∞ norm when

f ∈ L∞. However we do have the following weaker form of convergence:

prop:weak-star-fourier Proposition 25.41. If f ∈ L∞(T) and g ∈ L1(T), then

lim
r→1

1

2π

∫ π

−π
(f ∗ Pr)(θ)g(θ) dθ =

1

2π

∫ π

−π
f(θ)g(θ) dθ.

Proof. Problem
prob:weak-star-fourier
25.18. �
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As for the line, the Fourier transform is espcially well-behaved in the L2 setting,

though here things are somewhat simpler—we have L2(T) ⊂ L1(T) since the measure is

finite. The proof of the following theorem is left as an exercise.

thm:fourier-L2-circle Theorem 25.42. The Fourier transform is a unitary transformation from L2(T) onto

`2(Z). In particular,

i) (Plancherel theorem) If f ∈ L2(T), then ‖f‖2
2 =

∑∞
n=−∞ |f̂(n)|2.

ii) (Parseval identity) If f, g ∈ L2(T), then∫
T
f(θ)g(θ) dm(θ) =

∞∑
n=−∞

f̂(n)ĝ(n).

Moreover, for f ∈ L2(T) the partial sums SN of the Fourier Series for f converges to f

in L2(T).

In particular, note that the Fourier transform takes the orthonromal basis E =

{einθ}n∈Z of L2(T) onto the standard orthonormal basis of `2(Z), and the Fourier trans-

form of a function f ∈ L2(T) is just its sequence of coefficients with respect to this

orthonormal basis. Indeed if we write en(θ) = einθ, then

f̂(n) :=

∫
T
f(θ)e−inθ dm(θ) = 〈f, en〉L2(T).

Thus, if one has already proved that the functions {en} are an orthonormal basis for

L2(T), the proof of Theorem
thm:fourier-L2-circle
25.42 becomes quite simple. (Indeed, the theorem is es-

sentially equivalent to the assertion that the characters {en} form an orthonormal basis.

Why?)
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sec:schwartz

25.5. Schwartz functions and distributions. This section introduces the Schwartz

space S and the space of tempered distritbutions S ′. The theory of distributions allows

many of the important operations of analysis (such as differentiation and the Fourier

transform) to be extended to objects more singular than functions (indeed distributions

are sometimes known as generalized functions). The basic idea is this: if ψ is a very

smooth function (say C∞) and vanishes at infinity, then if f is differentiable we have

the integration by parts formula

∫
R
f ′(x)ψ(x) dx = −

∫
R
f(x)ψ′(x) dx.

However, the second integral will make sense even if the first does not (that is, even if

f ′ does not exist). If we identify f with the linear functional

ψ →
∫
R
fψ,

then the above calculation suggests that we can interpret “f ′” as the linear functional

ψ → −
∫
fψ′

even if f ′ does not exist in the usual sense. The theory of distributions makes this

heuristic precise. The first step is to carefully identify the space of smooth functions we

wish to use, and topologize it appropriately so that we can speak of continuous linear

functionals.

Let C∞b (R) denote the vector space of bounded C∞ functions on R.
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Definition 25.43. The Schwartz space S consists of all functions ψ ∈ C∞b (R) such

that xαψ(β)(x) is bounded for all integers α, β ≥ 0. /

We say that a function f is rapidly decreasing if xαψ(x) is bounded for all α ≥ 0.

So S consists of those ψ such that ψ and all of its derivatives are rapidly decreasing.

For example, ψ(x) = e−x
2

belongs to S . It is an important fact that S is closed under

differentiation, and under multiplication by polynomials:

Lemma 25.44. S is a vector space, and if ψ ∈ S then xψ(x) and ψ′(x) belong to S ,

and in fact xαψ(β) ∈ S for all α, β ≥ 0.

Proof. Exercise. �

Definition 25.45. For integers α, β ≥ 0, define for ψ ∈ S

‖ψ‖α,β := ‖xαψ(β)‖∞

/

lem:schwartz-norms Lemma 25.46. Each ‖ · ‖α,β is a norm on S .

It turns out that it is appropriate to topologize S not with a single norm, but with

the whole family of norms ‖ · ‖α,β simultaneously.

Definition 25.47. Say that a sequence ψn ⊂ S is Cauchy if it is Cauchy in each of the

norms ‖ · ‖α,β, and say that a sequence ψn ⊂ S converges if there exists ψ ∈ S such

that ‖ψn − ψ‖α,β → 0 for all α, β. /
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Of course, if ψn converges in S then the limit ψ is unique. (Check this.) Further:

prop:schwartz-completeness Proposition 25.48. S is complete. That is, if ψn is Cauchy in S , then there exists

ψ ∈ S such that ‖ψn − ψ‖α,β → 0 for all α, β ≥ 0.

Proof. Since Cb(R) is complete with respect to the ‖ · ‖∞ norm, by the definition of S

and the ‖ · ‖α,β norms we have that, for each α, β ≥ 0, there is a function ψα,β ∈ Cb(R)

such that xαψ
(β)
n → ψα,β uniformly on R. Put ψ = ψ0,0, the proof is finished if we can

show that ψα,β = xαψ(β) for all α, β.

From advanced calculus we know that if fn converges uniformly to f and f ′n converges

uniformly to g, then f is differentiable and f ′ = g. Applying this fact we conclude that

ψ0,1 = ψ′0,0, and applying it inductively we have ψ0,β = ψ(β) for all β ≥ 0. (In particular,

ψ
(β)
n → ψ(β) uniformly for all β.) From this it follows that xαψ

(β)
n → xαψ(β) pointwise

for all α, β, but since this sequence also converges to ψα,β uniformly we conclude that

ψα,β = xαψ(β) for all α, β as desired. �

We observed earlier that S is closed under differentiation and multiplication by

polynomials; we now see that these operations are continuous:

lem:diff-mult-schwartz-cns Lemma 25.49. If ψn → ψ in S , then xαψn → xαψ and ψ
(β)
n → ψ(β) in S .

Proof. Exercise. �

It is useful to observe (in connection with our discussion of the Fourier transfrom

later) that convergence in the family of norms ‖ · ‖α,β controls Lp convergence:
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Proposition 25.50. S ⊂ Lp for all 1 ≤ p ≤ ∞, and if ψn → ψ in S then also ψn → ψ

in Lp(R).

Proof. By the previous lemma, we have (1 + x2)ψ ∈ S for all ψ ∈ S , so in particular

for all x ∈ R

|ψ(x)| ≤ |ψ(x)|+ |x2ψ(x)|
1 + x2

≤ ‖ψ‖0,0 + ‖ψ‖2,0

1 + x2
.

But (1 + x2)−1 belongs to Lp(R) for all 1 ≤ p ≤ ∞, so ψ ∈ Lp. Applying this same

estimate to ψn − ψ we see that

‖ψn − ψ‖p ≤ (‖ψn − ψ‖0,0 + ‖ψn − ψ‖2,0) ‖(1 + x2)−1‖p

and the right hand side goes to 0 as ψn → ψ in S . �

Definition 25.51. The space of tempered distributions S ′ consists of all continuous

linear maps F : S → C. That is, a map F : S → C belongs to S ′ if and only if it is

linear and F (ψn)→ F (ψ) whenever ψn → ψ in S . /

It is straightforward to check that S ′ is a vector space. To emphasize the role of

S ′ as the dual space of S , we will write 〈F, ψ〉 for F (ψ). Tempered distributions F are

sometimes called generalized functions. We will topologize S ′ as follows: say Fn → F

in S ′ if 〈Fn, ψ〉 → 〈F, ψ〉 for all ψ ∈ S .

The following examples are fundamental; the unproved claims are left as exercises.

Example 25.52. a) (Tempered functions) A measurable function f : R → C is

called tempered if (1 + |x|)−Nf ∈ L1 for some integer N ≥ 0.
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Each tempered function f defines a tempered distribution by the formula

〈f, ψ〉 =

∫
R
fψ.

(To see that fψ ∈ L1 for every ψ ∈ S , write fψ = (1 + |x|)−Nf(1 + |x|)Nψ.)

The fact that ψ → 〈f, ψ〉 is continuous follows from dominated convergence. For

examples of tempered functions, note that every f ∈ Lp, 1 ≤ p ≤ ∞ is tempered

(apply Hölder’s inequality to (1+ |x|)−2f). More generally, any polynomial times

a tempered function is a tempered function. Let us also observe that if f, g are

tempered functions, then the associated tempered distributions are equal if and

only if f = g a.e. This justifies the name “generalized functions.”

b) (Tempered measures) A (positive, signed, or complex) Borel measure µ on R is

called tempered if
∫
R(1 + |x|)−N d|µ|(x) < ∞ for some integer N ≥ 0. Every

tempered measure gives rise to a tempered distribution via the pairing

〈µ, ψ〉 =

∫
R
ψ dµ.

If µ is absolutely continuous with respect to Lebesgue measure m, with Radon-

Nikodym derivative f = dµ
dm

, then µ is tempered if and only if f is a tempered

function, and we are back to example (a).

4

To give more examples, we first look at ways to obtain new tempered distributions

from old ones. One elementary but important way is the following:
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prop:T-on-distributions Proposition 25.53. If F ∈ S ′ and T : S → S is a continuous linear map, then

〈T ′F, ψ〉 := 〈F, Tψ〉

defines a tempered distribution.

Proof. If ψn → ψ in S , then

〈F, Tψn〉 → 〈F, Tψ〉

so T ′F defines a distribution. �

Before moving on to more general classes of distributions, we consider one more

special example:

prop:pv-distribution Proposition 25.54 (The Principal Value integral). For each ψ ∈ S , the limit

〈P1/x, ψ〉 := lim
ε→0

∫
|x|≥ε

1

x
ψ(x) dx (77) eqn:hilby-transform-distribution

exists, and defines a tempered distribution.

Proof. We first show that (
eqn:hilby-transform-distribution
77) is well-defined on S . Let ψ ∈ S , then by changing

variables in the integral on the negative half-line we get for each ε > 0∫
|x|≥ε

1

x
ψ(x) dx =

∫ ∞
ε

ψ(x)− ψ(−x)

x
dx

Since ψ is differentiable at 0, the integrand is bounded in a neighborhood of 0, and since

xψ(x) is bounded, the integrand decays faster than 1/x2 near infinity, so the integral is

convergent. Thus the limit exists as ε→ 0, and equals∫ ∞
0

ψ(x)− ψ(−x)

x
dx.
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To see that P1/x is continuous on S , first observe that for x > 0∣∣∣∣ψ(x)− ψ(−x)

x

∣∣∣∣ =

∣∣∣∣1x
∫ x

−x
ψ′(t) dt

∣∣∣∣ (78)

≤ 1

x

∫ x

−x
|ψ′(t)| dt (79)

≤ 2‖ψ′‖∞ (80)

It follows that

|〈P1/x, ψ〉| ≤
∫ 1

0

∣∣∣∣ψ(x)− ψ(−x)

x

∣∣∣∣+

∫ ∞
1

∣∣∣∣ψ(x)− ψ(−x)

x

∣∣∣∣ (81)

≤ 2‖ψ′‖∞ +

∫ ∞
1

(|xψ(x)|+ |xψ(−x)|)dx
x2

(82)

≤ 2‖ψ′‖∞ + 2‖xψ(x)‖∞ (83)

= 2‖ψ‖0,1 + 2‖ψ‖1,0 (84)

If we consider now ψn → ψ in S , then the above estimate applied to ψn−ψ shows that

〈P1/x, ψn〉 → 〈P1/x, ψ〉 and the proof is finished. �

Proposition 25.55 (Differentiation of temepered distributions). For any integer β ≥ 0

and any tempered distribution F ∈ S ′, the map

ψ → 〈F, (−1)βψ(β)〉

defines a tempered distribution, called the βth distributional derivative of F , denoted

F (β).

Proof. By Lemma
lem:diff-mult-schwartz-cns
25.49, the map Tψ = (−1)(β)ψ(β) is continuous on S , and the result

follows by Proposition
prop:T-on-distributions
25.53. �
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The reason for including the sign (−1)β in the definition of the distributional de-

rivative is so that our definition is compatible with integration by parts. In particular,

if f and f ′ are tempered functions, then the (formal) integration by parts calculation

at the beginning of this section is valid, and shows that the distributional derivative

ψ → 〈f, ψ〉 is ψ → 〈f ′, ψ〉.

Proposition 25.56 (The Heaviside function). Let H be the Heaviside function H(x) =

1[0,∞). Then H ′ = δ in the sense of distributions.

Proof. Let ψ ∈ S . H is a tempered function, so H ′ is given by

〈H ′, ψ〉 = −〈H,ψ′〉

= −
∫ ∞
−∞

H(x)
dψ

dx
dx

= −
∫ ∞

0

dψ

dx
dx

= ψ(0)

= 〈δ, ψ〉.

�

Notice that every distribution is infinitely differentiable in the sense of distributions.

So, we can take another derivative to get H ′′ = δ′. A quick computation shows that

〈δ′, ψ〈= −ψ′(0). It can be shown that δ′ is not given by any tempered measure (see

Problem
prob:eval-derivative
25.22.
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Our next use of Proposition
prop:T-on-distributions
25.53 will allow us to define the convolution of a distri-

bution with a Schwartz function φ.

Proposition 25.57. Let φ ∈ S and F ∈ S ′. Then the map

〈φ ∗ F, ψ〉 := 〈F, φ̃ ∗ ψ〉

defines a tempered distribution, called the convolution of F and φ. (Here φ̃(x) = φ(−x).)

Proof. Again it suffices to verify that the map ψ → φ̃∗ψ is continuous on S . The proof

is left as Problem
prob:schwartz-convolution
25.24. �

If f ∈ L1, one can also verify that f ∗ φ, viewed as a distribution, agrees with the

distribution induced by the L1 function f ∗ φ defined by ordinary convolution (Prob-

lem
prob:schwartz-convolution
25.24).

It is instructive to revisit L1 approximate units in the context of distributions. If

{φλ}λ>0 is an L1 approximate unit, then each φλ is a tempered function and hence

defines a distribution.

Proposition 25.58. If φλ is an L1 approximate unit, then φλ → δ in S ′.

Proof. By definition, for any ψ ∈ S

〈φλ, ψ〉 =

∫ ∞
−∞

φλ(y)ψ(y) dy = (φλ ∗ ψ̃)(0)

where ψ̃(x) = ψ(−x). As λ → 0, by Lemma
lem:continuity-approx-unit
25.18 we have (φλ ∗ ψ̃)(0) → ψ(0) =

〈δ, ψ〉. �
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Finally we consider the Fourier transform. The key fact is the following:

lem:fourier-schwartz Lemma 25.59. If ψ ∈ S , then ψ̂ ∈ S , and the map ̂: S → S is continuous.

Proof. The fact that ψ̂ belongs to S follows from repeated application of Proposi-

tions
prop:mult-to-diff
25.6 and

prop:diff-to-mult
25.8. Continuity follows from the fact that if ψn → ψ in S , then also

‖xα dβ

dxβ
(ψn − ψ)‖1 → 0 for all α, β. See Problem

prob:fourier-schwartz
25.23. �

Proposition 25.60 (Fourier transforms of tempered distributions). If ψ ∈ S , then

ψ̂ ∈ S , and for any F ∈ S ′ the formula

〈F̂ , ψ〉 := 〈F, ψ̂〉

defines a tempered distribution, called the Fourier transform of F .

Example 25.61. a) Let δt be the point mass at t ∈ R. We can compute δ̂t: for

ψ ∈ S we have

〈δ̂t, ψ〉 = 〈δt, ψ̂〉 (85)

= ψ̂(t) (86)

=

∫ ∞
−∞

e−2πixtψ(x) dx (87)

= 〈e−2πixt, ψ〉 (88)

so δ̂t = e−2πixt.

The expected inverstion ̂(e−2πixt) = δt also holds; the proof is left as an exercise.
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b) Consider the distribution P1/x of Proposition
prop:pv-distribution
25.54. One can show that P̂1/x is

the tempered distribution given by the tempered function

F (t) = −πisgn(t).

4

25.6. Problems.

Problem 25.1. Prove Proposition
prop:fourier-basic
25.2

Problem 25.2. Complete the proof of Lemma
lem:L1-translation
25.4.

prob:convo-cpt-support Problem 25.3. Prove Proposition
prop:convo-cpt-support
25.14

prob:continuous-convo Problem 25.4. Prove, if E ⊂ [0, 1] has positive Lebesgue measure, then the set

E − E = {x− y : x, y ∈ E}

contains an interval centered at the origin. (Hint: let −E = {−x : x ∈ E} consider the

function h(x) = 1−E ∗ 1E.)

prob:scaled-approx-unit Problem 25.5. Suppose φ is an unsigned L1 function with
∫
φ = 1, and let φλ(x) =

1
λ
φ
(
x
λ

)
.

a) Prove {φλ}λ>0 is an L1 approximate unit.

b) Give a simpler proof of Lemma
lem:continuity-approx-unit
25.18 by making a change of variables in equa-

tion (
eqn:approx-unit-lemma-step
59).
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prob:smooth-dense-Lp Problem 25.6. a) Prove, if f ∈ C1
c (R) and g is a compactly supported L1 function,

then f ∗ g is C1 with compact support. (Hint: justify differentiation under the

integral sign.)

b) By induction, conclude that if f ∈ C∞c (R) and g ∈ L1 is compactly supported,

then f ∗ g ∈ C∞c (R).

c) Conclude that C∞c (R) is dense in Lp for all 1 ≤ p < ∞. (Apply Theorem
thm:L1-approx-units
25.17

with φ a bump function.)

d) Construct a bump function on Rn and extend the above results to n > 1.

prob:poisson-computation Problem 25.7. Compute the integral in Lemma
lem:poisson-computation
25.23.

prob:FTnotonto Problem 25.8. This problem gives a proof that the Fourier transform̂: L1 → C0(R)

is not surjective.

a) Draw a picture of hn := 1[−n,n] ∗ 1[−1,1] and determine its C0(R) norm.

b) Show that hn is, up to a multiplicative constant independent of n, the Fourier

transform of the L1 function

fn :=
sin 2πx sin 2πnx

x2
.

(Hint: you can compute integrals, or use the L1 inversion theorem.)

c) Show that ‖fn‖1 → ∞ as n → ∞. Conclude that the Fourier transform is not

surjective. (Hint: if it were surjective... .) The sequence (hn) is not Cauchy in

C0(R) and hence
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Problem 25.9. Suppose that f ∈ L1, f is differentiable a.e., f ′ ∈ L1, and f(x) =∫ x
−∞ f

′(y) dy for a.e. x ∈ R. Prove f̂ ′ = 2πitf̂(t).

prob:L2-inversion Problem 25.10. Complete the proof of Theorem
thm:L2-inversion
25.30.

Problem 25.11. Let ϕλ be an L1(T) approximate unit. Prove, if f ∈ C(T), then

f ∗ ϕλ → f uniformly as λ→ 0.

Problem 25.12. State and prove an analog of Proposition
prop:fourier-basic
25.2 for Fourier series.

Problem 25.13. Prove Theorem
thm:riemann-leb-circle
25.33.

prob:fourier-L2-circle Problem 25.14. Prove Theorem
thm:fourier-L2-circle
25.42. Also prove that L2(T) inversion is possible in

the following sense: for all f ∈ L2(T), we have

lim
N→∞

1

2π

∫ π

−π

∣∣∣∣∣f(θ)−
N∑

n=−N

f̂(n)einθ

∣∣∣∣∣
2

dθ = 0.

(In other words, the partial sums sN of the Fourier series converge to f in the L2 norm.)

Problem 25.15. Let A(T) denote the set of functions f ∈ L1(T) such that the Fourier

transform f̂ belongs to `1(Z).

a) Prove, if f, g ∈ A(T), then their product fg also belongs to A(T). (Hint: use

the `1 inversion theorem to write f and g as the sums of their Fourier series,

and express the Fourier coefficients of fg in terms of the coefficients of f and g.)

Thus, A(T) is a ring.
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b) Prove the Fourier transform is a ring isomorphism from A(T) onto `1(Z) (where

the multiplication on `1(Z) is convolution - see Example
ex:3banachalgs
26.1).

Problem 25.16. Prove, if f ∈ Ck(T), k ≥ 1, then the Fourier coefficients of f satisfy

lim
n→±∞

|n|k|f̂(n)| = 0.

(Hint: first compute the Fourier transform of f ′ explicitly.)

prob:fourier-divergence Problem 25.17. Fill in the details in the proof of Theorem
thm:fourier-divergence
25.34. To show that

‖DN‖1 →∞, fix N , and for each 0 ≤ k ≤ 2N let Ik denote the interval[
1

2

(
kπ

N + 1
2

)
,
1

2

(
(k + 1)π

N + 1
2

)]
(These are intervals on which DN has constant sign.) Then∫ π

−π
|DN(t)| dt = 2

2N∑
k=0

∫
Ik

∣∣∣∣sin(N + 1
2
)t

sin t
2

∣∣∣∣ dt
To estimate the integral over Ik, first show that there is a universal constant C > 0 such

that ∣∣∣∣ 1

sin t
2

∣∣∣∣ ≥ C
n+ 1

2

k
for all t ∈ Ik

for each k > 0.

prob:weak-star-fourier Problem 25.18. Prove Proposition
prop:weak-star-fourier
25.41.

Problem 25.19. [Fourier transforms of measures] Let µ be a finite (signed or complex)

Borel measure on T. The Fourier transform of µ is the function µ̂ : Z→ C defined by

µ̂(n) :=

∫
T
e−inθ dµ(θ).
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a) Prove µ̂ is bounded. Give an example of a measure µ such that µ̂ /∈ c0(Z).

b) For fixed µ, define for each 0 ≤ r < 1

A(r, θ) :=
∞∑

n=−∞

µ̂(n)r|n|einθ.

Prove the measures µr := A(r, θ)dm(θ) converge to µ as r → 1, in the following sense:

for every continuous function f on T,

lim
r→1

∫
T
f(θ)A(r, θ)dm(θ) =

∫
T
f(θ) dµ(θ).

Problem 25.20. [The Fejér kernel] Consider the cutoff function on Z

ψN(k) =

{
0 if |k| > N

1− |k|
N

if |k| ≤ N

Find a closed form expression for

FN(θ) =
N∑

k=−N

ψN(k)eikθ,

and show that the family {FN(θ)}N≥1 is an L1(T) approximate unit.

Problem 25.21. Prove S is dense in Lp(R) for 1 ≤ p <∞.

prob:eval-derivative Problem 25.22. Prove there is no finte Borel measure µ on [−1, 1] such that
∫ 1

−1
f dµ =

f ′(0) for all f ∈ C1[−1, 1].

prob:fourier-schwartz Problem 25.23. a) Complete the proof of Lemma
lem:fourier-schwartz
25.59.

c) Prove, if φ, ψ ∈ S then ∫
R
φ̂ψ =

∫
R
φψ̂.

(This justifies the definition of F̂ .)
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b) Prove Fourier inversion holds in S ; that is, (ψ̂)̌ = ψ.

c) State and prove a Fourier inversion theorem for the Fourier transform F → F̂

on S .

prob:schwartz-convolution Problem 25.24. a) Prove, if φ ∈ S and ψn → ψ in S , then φ ∗ψn → φ ∗ψ in S .

(Here convolution means oridnary convolution of functions.)

b) Let f ∈ L1 and φ ∈ S . Prove the tempered distribution f ∗φ coincides with the

distribution defined by the tempered function f ∗ φ.

c) Show that δ ∗ φ = φ in the sense of distributions.

d) Let φ ∈ S be a nonnegative function with
∫
φ = 1, and let φλ(x) := x

λ
φ
(
x
λ

)
the

corresponding L1 approximate unit. Prove for any F ∈ S ′, F ∗ φλ → F in S ′

as λ→ 0.

Problem 25.25. Show if f : R→ R is twice continuously differentiable and has compact

support, then f̂ ∈ L1(R). Now show the Fourier transform cF0 : L1(R) → C0(R) has

dense range. (It is not onto by Problem
prob:FTnotonto
25.8.)
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26. Banach Algebras and the 1
f
Theorem

A Banach Algebra A is a complete normed (associative) algebra over C such that

‖a b‖ ≤ ‖a‖ ‖b‖

for a, b ∈ A and in the case A is unital (with unit 1), ‖1‖ = 1. (In the unital case there

is always an equivalent norm in which the unit has norm 1.)

ex:3banachalgs Example 26.1. Here are three examples of unital Banach algebras.

(i) For a Hilbert space H, the algebra B(H) is a unital Banach algebra.

(ii) Let X be a compact metric space. The Banach space C(X) is a unital Banach

algebra.

(iii) Given f, g ∈ `1(Z) and n ∈ Z observe that

∞∑
n=−∞

∞∑
j=−∞

|f(j)g(n− j)| =
∑
j

[
∑
n

|g(n− j)|]|f(j)| = ‖f‖1 ‖g‖1.

Define f ∗ g : Z→ C by

f ∗ g(n) =
∞∑

j=−∞

f(j) g(n− j).

The computation above shows this sum converges (absolutely) and further that

f ∗ g ∈ `1(Z). It also verifies that `1(Z) under the multiplication ∗ is a Banach

algebra. The operation ∗ is the convolution product on `1(Z).

4

26.1. Ideals and quotients.
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prop:IQs Proposition 26.2. Suppose A is a Banach algebra with unit 1 and let G denote the

set of its invertible elements.

it:geom (i) if ‖a‖ < 1, then 1− a ∈ G and moreover,

(1− a)−1 =
∞∑
j=0

aj,

and

‖(1− a)−1‖ ≤ 1

1− ‖a‖
;

(ii) the set G is open;

it:atoainv (iii) the mapping G → G given by a→ a−1 is continuous;

(iv) if I ⊂ A is a proper ideal, then so is its closure;

(v) if M ⊂ A is a maximal ideal, then M is closed;

(vi) every proper ideal is contained in a maximal ideal;

(vii) if I is a closed ideal, then the quotient A /I is a Banach algebra with unit and

is commutative if A is.

Proof. If ‖a‖ < 1, then, using ‖aj‖ ≤ ‖a‖j, it follows that the partial sums

sn =
n∑
j=0

aj

are Cauchy and hence converge (as A is complete) to some s. Since

(1− a)sn = 1− an+1

and the right hands side tends to 1,

(1− a)s = 1.
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Moreover, ‖(1− a)−1‖ < 1
1−‖a‖ .

Suppose a is invertible. Given c such that ‖c− a‖ < 1
2
‖a−1‖−1,

‖ca−1 − 1‖ = ‖(c− a)a−1‖ < 1

2

and therefore 1− (1− ca−1) = ca−1 is invertible and, thus so is c and we have shown G

is open. For future reference, note

‖ac−1‖ ≤ 1

1− ‖1− ca−1‖
< 2

Hence,

‖c−1‖ = ‖a−1ac−1‖ ≤ 2‖a−1‖.

As for continuity, if ‖c− a‖ < 1
2
‖a−1‖−1, then

‖a−1 − c−1‖ = ‖a−1(c− a)c−1‖ ≤ ‖a−1‖ ‖c−1‖ ‖c− a‖ < 2‖a−1‖ ‖c− a‖.

Let G denote the set of invertible elements of A . Thus G is open. If I is a proper

ideal, then I ⊂ G c and hence I ⊂ G c. An easy argument, based upon continuity of

multiplication and addition, shows I is an ideal and thus a proper ideal.

Let π : A → A /I denote the quotient map. That A /I is again a Banach space

with the quotient norm

‖π(a)‖ = inf{‖a− b‖ : b ∈ I ‖} = inf{‖x‖ : π(x) = π(a)}.

has long since been proved. What remains to show is that the quotient norm is a Banach

algebra norm. To this end, let a, b ∈ A and ε > 0 be given. There exists a′, b′ ∈ A such
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that π(a′) = a, π(b′) = b and

‖a′‖ < ‖π(a)‖+ ε, ‖b′‖ < π(b) + ε.

Thus, π(a′b′) = π(ab) and

‖π(ab)‖ ≤ ‖(a′b′)‖ ≤ (‖π(a)‖+ ε)(‖π(b)‖+ ε).

Thus multiplication in the quotient is sub-multiplicative. In particular, 0 6= ‖π(1)‖ =

‖π(1)2‖ ≤ ‖π(1)‖2 and therefore ‖π(1)‖ ≥ 1. On the other hand, by the definition of the

quotient norm, ‖π(1)‖ ≤ ‖1‖ = 1. Alternately, note if ‖1−m‖ < 1, then m = 1−(1−m)

is invertible and hence m does not lie in a proper ideal. �

26.2. The spectrum. Suppose A is a Banach algebra with unit. The spectrum of an

element a ∈ A , denoted σ(a), is given by

σ(a) = σA(a) = {z ∈ C : a− z1 is not invertible}.

The complement of σ is the resolvent set. Often, we write a− z instead of a− z1.

Theorem 26.3. The spectrum σ(a) is not empty and compact.

Proof. Arguing by contradiction, suppose a − z1 is invertible for all z ∈ C. Define

f : C→ A by f(z) = (a− z1)−1. An easy argument using item (
it:atoainv
iii) of Proposition

prop:IQs
26.2

shows f is continuous and

lim
|z|→∞

|f(z)| = 0
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and therefore f is bounded. Given a linear function λ ∈ A ∗, let g : C → C denote the

function

g(z) = λ(f(z)).

It follows that g is bounded and continuous. Further, for z 6= w ∈ C

f(w)− f(z)

w − z
=

(a− w)−1 − (a− z)−1

w − z
= (a− w)−1 (a− z)−1 =

Hence, for w 6= z,

g(w)− g(z)

w − z
= λ((a− w)−1 (a− z)−1).

Fixing z and using continuity of the maps w 7→ a− w and of b 7→ b−1 as well as that of

λ, it follows that g is differentiable at z and

g′(z) = λ((a− z)−2).

Thus g is entire and bounded and therefore constant by Liouville’s Theorem. Now g

vanishes at ∞ and hence is identically zero. Choosing, by Corollary
cor:hb-cor
21.10, λ such that

λ(a−1) 6= 0 gives a contradiction since g(0) = λ(f(0)) = λ(a−1). Thus σ(a) is not empty.

For |z| > ‖a‖, (a− z) is invertible. Thus σ(a) is a bounded set. (In fact a subset of

{z : |z| ≤ ‖a‖}.) The set G of invertible elements is open and the mapping h : C→ A

defined by h(z) = a−z is continuous. Hence O = h−1(G ) is open and therefore σ(a) = Oc

is closed. �

26.3. Commutative Banach algebras.
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prop:max Proposition 26.4. Suppose A is a unital commutative Banach algebra and M ⊂ A .

If M is a maximal ideal, then Q = A /M has no proper (non-zero) ideals and thus

each non-zero element of Q is invertible.

Proof. Let π : A → A /M denote the quotient map. If I ⊂ A /M is a proper

ideal, then π−1(I ) ( A is an ideal containing M . It is also proper as π is onto. By

maximality, π−1(I ) = M and hence, as π is onto, I = π(π−1(I)) = π(M ) = (0) ⊂ Q.

Thus Q has no non-trivial proper ideals. If q ∈ Q, then qQ is an ideal that is not

proper; i.e., qQ = Q and hence q is invertible. �

prop:BM Proposition 26.5 (Banach-Mazur). Suppose A is a unital Banach algebra. If each

non-zero element of A is invertible, then A is C; i.e., letting 1 denote the unit, A =

{z1 : z ∈ C} isometrically isomorphically. In particular, if M is a maximal ideal, then

A /M = C.

Proof. Let a ∈ A be given. Since σ(a) 6= ∅, there is a λ such that a−λ is not invertible.

Hence a− λ = 0; that is, a = λ1. �

Proposition 26.6. Suppose A is a commutative Banach algebra with unit. If a ∈ A is

not invertible, then there is a unital homomorphism ϕ : A → C such that ϕ(a) = 0. In

particular, a ∈ A is invertible if and only if ϕ(a) 6= 0 for every unital homomorphism

ϕ : A → C.
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Proof. If a is not invertible, then I = aA is a proper ideal (it contains no invertible

elements). Thus a is contained in a maximal ideal M . Let ϕ : A → A /M = C denote

the quotient map. It is a unital homomorphism and ϕ(a) = 0. �

prop:premaxideal Proposition 26.7. Suppose A is a commutative Banach algebra with unit. If M is

a maximal ideal, then there is a unique unital homomorphism ϕ : A → C such that

ker(ϕ) = M . Conversely, if ϕ : A → C is a unital homomorphism, then ker(ϕ) is a

maximal ideal. In particular unital homomorphisms ϕ : A → C are continuous with

‖ϕ‖ = 1 and there is a bijective correspondence between unital homomorphisms and

maximal ideals.

Proof. Suppose M is a maximal ideal. By Propositions
prop:max
26.4 and

prop:BM
26.5, there exists a

unital homomorphism ϕ : A → C with kernel M . Suppose now that Suppose ψ :

A → C is a unital homomorphisms with the same kernel M . If ϕ(a) = 0, then

a ∈M and hence ψ(a) = 0 too. Given a ∈ A , since ϕ(ϕ(a)1 − a) = 0, it follows that

0 = ψ(ϕ(a)1− a) = ϕ(a)− ψ(a). Hence ψ = ϕ and ϕ is unique.

Now suppose ϕ : A → C is a unital homomorphism and let M denote its kernel.

Thus M is an ideal and there is a unital homomorphism ρ : Q = A /M → C such

that ϕ(a) = ρ(π(a)) where π is the quotient map. It follows that Q has no ideals and

therefore M is a maximal ideal. Finally ϕ = τ ◦π where τ is the isometric isomorphism

identifying A /M with C since both are unital homomorphisms with kernel M . Hence

‖ϕ‖ = 1. �
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26.4. The 1
f

theorem. The Wiener algebra W (T) consists of those functions f ∈ L1(T)

such that f̂ ∈ `1(Z).

Proposition 26.8. W (T) is a subalgebra of C(T) and, for f, g ∈ W (T),

f̂ g = f̂ ∗ ĝ.

In particular, W (T) is a Banach algebra when given the norm ‖f‖ = ‖f̂‖1 and this

Banach algebra is isometrically isomorphic to `1(Z) under the mapping f 7→ f̂ .

Proof. Suppose f, g ∈ W (T). In particular, f̂ , ĝ ∈ `1(Z) and recalling Example
ex:3banachalgs
26.1, for

each n the sum

f̂ ∗ ĝ(n) =
∞∑

j=−∞

f̂(j)ĝ(n− j)

converges and ∑
n

∞∑
j=−∞

|f̂(j)ĝ(n− j)| = ‖f̂‖1 ‖ĝ‖1

so that f̂ ∗ ĝ ∈ `1(Z).

By L1 − `1 inversion,

f =
∞∑

n=−∞

f̂(n)eint, g =
∞∑

n=−∞

ĝ(n)eint

with the series converging pointwise absolutely and uniformly by L1 − `1 inversion. In

particular, both f and g are continuous and thus fg is continuous and in L1. The

sequence

sk =
k∑

j=−k

f̂(j)eijt
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converges uniformly to f and

skg =
k∑

j=−k

f̂(j)eijt
∞∑

n=−∞

ĝ(n)eint

=
∞∑

m=−∞

[
k∑

j=−k

f̂(j)ĝ(m− j)]eimt

converges uniformly to fg. Hence,

f̂ g(n) = lim
k→∞

[
k∑

j=−k

f̂(j)ĝ(n− j)] = f̂ ∗ ĝ(n).

Thus f̂ g = f̂ ∗ ĝ ∈ `1(Z). Thus fg ∈ W and the mapping f → f̂ is a ring homomorphism

that, as an exercise shows, is bijective. �

Proposition 26.9. If ϕ : W (T)→ C is a homomorphism, then there is a θ such that

ϕ(f) = f(eiθ).

Proof. Let ι : T → T denote the identity function, ι(eix) = eix. Let w = ϕ(ι). For

|z| < 1, the function (1 − zι) is invertible and hence so is ϕ = 1 − zw. It follows that

|w| ≤ 1. The same argument with ι−1 in place of ι shows |w| = 1. Hence w = eiθ for

some θ. For a trigonometric polynomial p(eix) =
∑N
−N pje

ijx, we have ϕ(p) = p(eiθ) and

since polynomials are dense in W (T), the proof is complete. �

Theorem 26.10. If f ∈ W (T) and if f is never 0, then 1
f
∈ W (T); i.e., an element

g ∈ `1(Z) is invertible if and only if the function f =
∑
gje

ijt has no zeros.

Proof. An element f ∈ W (T) is invertible if and only if ϕ(f) 6= 0 for every homomor-

phism ϕ : W (T) → C. Each such homomorphism is evaluation is of the form eiθ (for
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some real θ); i.e., ϕ(f) = f(eiθ) and since, by assumption, this value is not 0, the proof

is complete. �

26.5. The Weak-star topology and Gelfand Transform. Let X denote a Banach

space with its dual X ∗. Given x ∈ X , let px : X ∗ → C denote the (linear) mapping

px(λ) = λ(x). The weak-star topology on X ∗ is the topology generated by the family of

functions {px : x ∈ X}. The (closed) unit ball X ∗1 of X ∗ is the set

X ∗1 = {λ ∈ X ∗ : ‖λ‖ ≤ 1}.

Theorem 26.11 (Banach-Alaoglu). The unit ball X ∗1 is compact in the weak-star topol-

ogy.

Proof sketch. For x ∈ X , let Dx = {z ∈ C : |z| ≤ ‖x‖} and let P =
∏

x∈X Dx in

the product topology (the topology generated by the canonical projections). The Ty-

chonoff’s Theorem says P is compact. The space P can be identified with functions

g : X → C satisfying

|g(x)| ≤ ‖x‖.

Define τ : X ∗1 → P by

τ(λ)(x) = λ(x).

(Thus τ is simply identifies, in the canonical fashion, X ∗1 as a subset of P .)

Evidently τ is injective.
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Suppose f is in the (product topology) closure of X ∗1 ⊂ P . Given ε > 0 and x, y ∈ X

the set

{g ∈ P : |g(x)− f(x)|, |g(y)− f(y)| |g(x+ y)− f(x+ y)| < ε}

is a neighborhood of f in the product topology. Hence there is a λ ∈ X ∗1 in this

neighborhood. Since λ is linear, it follows that

|f(x+ y)− f(x)− f(y)| < 3ε.

Thus f preserves sums. Similarly f preserves scalar multiplication. Hence f is linear.

A similar argument shows ‖f‖ ≤ 1. Hence f ∈ X ∗1 . Thus R = τ(X ∗1 ) is closed in the

product topology and therefore compact. Now view τ : X ∗1 → R. A subbasic open set

in X ∗1 takes the form p−1
x ({z ∈ C : |z − w| < δ} = {λ ∈ X ∗1 : |λ(x) − w| < δ} for some

x ∈ X , w ∈ C and δ > 0. Its preimage under τ−1 (so image under τ) is the (relatively)

open set

τ(X ∗1 ) ∩ {f ∈ P : |f(x)− w| < δ}.

Hence τ−1 is continuous and since the continuous image of a compact set is compact,

τ−1(R) = X ∗1 is compact. �

Let A denote a commutative Banach algebra with unit. The maximal ideal space

Σ = ΣA of A is

Σ = {ϕ : A → C : ϕ is a homomorphism} ⊂ A ∗
1

given the relative weak-star topology. (We have used Proposition
prop:premaxideal
26.7 that each ‖ϕ‖ =

1.)
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Proposition 26.12. Σ is a compact Hausdorff space.

Proof. It suffices to show that Σ is closed (in the weak-star topology); that is, if f is in

the closure of Σ, then f is multiplicative and unital. Given a, b ∈ A and ε > 0, the set

{h ∈ A ∗ : |h(a)− f(a)|, |h(b)− f(b)|, |h(ab)− f(ab)| < ε}

is a neighborhood of f . Hence it contains some h ∈ Σ. It follows that

|f(ab)− f(a)f(b)| ≤|f(ab)− h(ab)|+ |h(a)| |h(b)− f(b)|+ |f(b)| |h(a)− f(a)|

<(1 + |h(a)| ‖a‖+ |f(b)| ‖b‖)ε.

Since a, b are fixed and ε > 0 is arbitrary, f(ab)−f(a)f(b) = 0. Thus f is multiplicative.

A proof that Σ is Hausdorff is left to the gentle reader. �

Proposition 26.13. Given a ∈ A the function â : Σ → C defined by â(ϕ) = ϕ(a) is

continuous. Moreover, the mapping G : A → C(Σ) defined by G (a) = â is a continuous

unital homomorphism of norm one. In particular,

p̂(a)(ϕ) = ϕ(p(a)) = p(ϕ(a))

for ϕ ∈ Σ.

The mapping G is the Gelfand Transform.

Proof. The weak-star topology is defined exactly to make each G (a) continuous. Since

ϕ ∈ Σ has norm one, ‖G (a)‖ ≤ ‖a‖. On the other hand, G (1) is the function that is

identically equal to 1 and thus ‖G (1)‖ = 1. Thus ‖G ‖ = 1. An easy exercise shows G

is multiplicative and hence a unital homomorphism. �
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prop:sigma-gel Proposition 26.14. For a ∈ A ,

σ(a) = {ϕ(a) : ϕ ∈ Σ}.

Moreover, if A is generated by a, then G (a) : Σ→ σ(a) is a homeomorphism.

Proof. The main part of the proposition is a restatement of Proposition
prop:premaxideal
26.7. For the

moreover, the function G (a) is continuous with compact domain. It is onto, since σ(a) =

{ϕ(a) : ϕ ∈ Σ}. Thus G (a) is a homeomorphism. �

26.6. The spectral radius formula. Given A a unital Banach algebra and a ∈ A ,

the spectral radius of a is

r(a) = max{|z| : z ∈ σ(a)}.

Proposition 26.15. r(a) = limn→∞ ‖an‖
1
n .

Proof. First observe, for m ∈ N+ and z ∈ C,

zm+1 − am+1 = (z − a)
m∑
j=0

zjam−j.

Thus, if z − a is not invertible, then neither is zm+1 − am+1. Consequently, |zm+1| ≤

‖am+1‖ and therefore |z| ≤ lim inf ‖an‖ 1
n . Hence, if z ∈ σ(a), then |z| ≤ lim inf ‖an‖ 1

n .

Given ρ ∈ A ∗, consider the function

g(z) = ρ((1− za)−1).

It is analytic on the set {z ∈ C : |z| < 1
r(a)
}.
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For |z| < 1
‖a‖ , the function g has the power series expansion,

g(z) =
∑

ρ(an)zn.

Hence this series has radius of convergence at least 1
r(a)

and hence, if |z| < 1
r(a)

, then the

set {ρ(an)zn} is bounded. Fix |z| < 1
r(a)

, view fn = znan ∈ A as an element of A ∗∗ so

that fn(ρ) = ρ(fn) = znρ(an) for ρ ∈ A ∗. For each ρ ∈ A ∗ there is a constant Cρ such

that

|fn(ρ)| = |ρ(fn)| ≤ Cρ.

Thus (fn) is a pointwise bounded set of linear functionals on the Banach space A ∗.

By the principle of uniform boundedness, there is a constant C such that ‖fn‖ ≤ C

independent of n. Thus ‖znan‖ ≤ C and therefore lim sup ‖an‖ 1
n ≤ 1

|z| . Hence, by

choosing z such that |z| < 1
r(a)

is close to 1
r(a)

,

lim sup ‖an‖
1
n ≤ r(a).

�

cor:gelra Corollary 26.16. Suppose A is a commutative Banach algebra with unit and maximal

ideal space Σ. Given a ∈ A ,

‖G (a)‖ = lim ‖an‖
1
n = r(a).

Proof. Recall G (a) is the function on Σ defined by G (a)(h) = h(a). Hence, in view of

Proposition
prop:sigma-gel
26.14, ‖G (a)‖ = max{|h(a)| : h ∈ Σ} = r(a). �
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27. C-star algebras and the functional calculus

A C-star algebra A is Banach algebra with norm ‖ · ‖ and an involution A → A ,

denoted a→ a∗, such that for a, b ∈ A and c ∈ C,

(i) (a∗)∗ = a (involutive);

(ii) (ab)∗ = b∗a∗ (anti-multiplicative);

(iii) (ca+ b)∗ = ca∗ + b∗ = c∗a∗ + b∗ (anti-linear); and

(iv)

‖a∗a‖ = ‖a‖2

In the case A has a unit 1, as with Banach algebras, we assume ‖1‖ = 1. Note

1∗ = 1∗1 = (1∗1)∗∗ = (1∗1)∗ = (1∗)∗ = 1 = 1.

For X a compact metric space (or just a compact Hausdorff space), C(X) is a C-star

algebra given the usual norm and involution f ∗(z) = f(z) = f(z)∗. For H a (complex)

Hilbert space, B(H), the bounded operators on H, is a C-star algebra given the usual

norm and involution T 7→ T ∗ given by the map taking an operator T to its adjoint,

〈Tx, y〉 = 〈x, T ∗y〉, x, y ∈ H.

An element a ∈ A is hermitian if a∗ = a.

prop:normherm Proposition 27.1. If a is hermitian, then ‖a‖ = r(a), the spectral radius of a.
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Proof. Since a = a∗, we have ‖a2‖ = ‖a∗a‖ = ‖a‖2. By induction ‖a2n‖ = ‖a‖2n . Hence,

by the spectral radius formula,

‖a‖ = lim ‖a2n‖
1
2n = r(a).

�

An element u ∈ A is an isometry if u∗u = 1.

Proposition 27.2. Suppose A is a C-star algebra with unit and h : A → C is a unital

homomorphism and a, u ∈ A .

(1) If a = a∗, then h(a) ∈ R;

(2) h(a∗) = h(a)∗(= h(a));

(3) h(a∗a) ≥ 0;

(4) If u is an isometry, then |h(u)| = 1.

In particular, if a is hermitian, then σ(a) ⊂ R; and any homomorphism h : A → C

is actually a ∗-homomorphism.

Proof. Recall the norm of a unital homomorphism of a Banach algebra is 1. (Identify it

with the mapping π : A → A / ker(h) = C.) Assuming a = a∗, for t ∈ R,

|h(a+ it)|2 ≤ ‖a+ it‖2 = ‖(a+ it)∗(a+ it)‖ = ‖a2 + t2‖ ≤ ‖a‖2 + t2.

Writing h(a) = α + iβ,

α2 + (β + t)2 ≤ ‖a‖2 + t2.
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Hence β = 0 and thus h(a) ∈ R, proving item (i).

To prove item (ii), write a = x+ iy where x, y are hermitian (the cartesian decom-

position) and apply the first part of the proposition.

For the third part, h(a∗a) = h(a∗)h(a) = h(a)∗h(a) = |h(a)|2 ≥ 0.

Finally 1 = h(1) = h(u∗u) = h(u∗)h(u) = h(u)∗h(u) = 1. Thus |h(u)| = 1. �

Theorem 27.3. If A is a commutative C-star algebra with unit and maximal ideal space

Σ, then the gelfand transform G : A → C(Σ) is an isometric ∗-isomorphism; i.e., A

and C(Σ) are equal as C-star algebras.

Proof. If a ∈ A is hermitian, then ‖a‖ = r(a) = ‖G (a)‖ by Proposition
prop:normherm
27.1 and

Corollary
cor:gelra
26.16.

For a ∈ A and ϕ ∈ Σ,

G (a∗)(ϕ) = ϕ(a∗) = ϕ(a)∗ = G (a)∗(ϕ).

Thus G (a∗) = G (a)∗ and G is a ∗-homomorphism. Further, given a ∈ A , since a∗a is

hermitian and G is a ∗-homomorphism,

‖a‖2 = ‖a∗a‖ = ‖G (a∗a)‖ = ‖|G (a)|2‖ = ‖G (a)‖2.

Hence ‖a‖ = ‖G (a)‖ and G is an isometry and thus has closed range. Therefore to show

G is onto, it suffices to show it has dense range. Now G (A ) is a subalgebra of C(Σ)

that is closed under complex conjugation (the involution), contains the constants and
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separates points. Hence by Stone-Weierstrass it is dense. Thus G is a bijective isometric

∗-isomorphism. �

27.1. Normal elements and the functional calculus. Given an element a in a C-

star algebra A , the C-star algebra generated by a, denoted C∗(a), is the smallest C-star

subalgebra of A containing a.

Proposition 27.4 (Spectral Permanence). Let A be a unital C-star algebra. An a ∈ A

is invertible in A if and only if it is invertible in C∗(a). In particular, if B ⊂ A is a

unital C-star algebra and a ∈ B, then

σB(a) = σA (a).

Thus the spectrum of a does not depend upon the C-star algebra.

Proof. First suppose a is hermitian and invertible in A . In this case a is invertible

in the commutative C-star algebra D generated by a and a−1, namely the closure of

expressions of the form r(a) =
∑N

j=−N rja
−j. The Gelfand transform GD : D → ΣD is

an isometric ∗-isomorphism. Suppose ϕ, ψ ∈ ΣD and ϕ(a) = ψ(a). Since a is invertible

this common value is not zero and moreover ϕ(a−1) = ϕ(a)−1 = ψ(a)−1 = ψ(a−1).

Hence ϕ = ψ. Therefore the subalgebra GD(C∗(a)) ⊂ C(ΣD) separates points. It is also

contains the constants, is closed under pointwise conjugation and closed. Hence, by the

Stone-Weierstrass Theorem, GD(C∗(a)) = C(ΣD) and therefore C∗(a) = D . Hence a is

invertible in C∗(a).
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For the general case, if a is invertible in A with inverse b ∈ A , then a∗a is invertible

in A with inverse bb∗. Thus a∗a is invertible in C∗(a∗a); i.e., bb∗ ∈ C∗(a∗a). Finally,

b = b1 = b(b∗a∗) = (bb∗)a ∈ C∗(a). �

An element a in a C-star algebra A is normal if a∗a = aa∗. Assuming a is normal,

given a polynomial p(z, z) =
∑
pj,kz

jzk, let

p(a, a∗) =
∑

pj,ka
ja∗k

(since a and a∗ commute the order of the products are not important). In this case, the

C-star algebra generated by a is the closure of {p(a, a∗) : p = p(z, z) a polynomial}. It

is commutative.

Proposition 27.5. Let A = C∗(a) be a C-star algebra generated by a normal element

a and let Σ denote its maximal ideal space. The mapping G (a) : Σ→ σ(a) is a homeo-

morphism. Moreover, if p = p(z, z) is a polynomial, then G (p(a, a∗)) = p(G (a),G (a)∗).

Sketch of proof. The moreover part of the Proposition is routine. G (a) is a continuous

function on Σ and since σ(a) = {h(a) : h ∈ Σ} its codomain can be taken to be σ(a).

If h, g ∈ Σ and h(a) = g(a), then, for all polynomials p(z, z∗), we have h(p(a, a∗)) =

g(p(a, a∗)) by the moreover portion of proposition. Hence h = g and G (a) is one-one.

Since G (a) is a continuous bijection with compact domain, it is a homeomorphism. �

The proof of the following lemma is left as an exercise.
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Lemma 27.6. If X and Y are compact Hausdorff spaces and τ : X → Y is a home-

omorphism, then τ ∗ : C(Y ) → C(X) defined by τ ∗(f)(x) = f(τ(x)) is an isometric

∗-isomorphism.

Given a ∈ A normal, let G denote the Gelfand transform G : C∗(a) → C(ΣC∗(a))

(where Σ = ΣC∗(a) is the maximal ideal space of C∗(a) ⊂ A ). The lemma applies to

τ = G (a) : ΣC∗(a) → σ(a). In this case, for f ∈ C(σ(a)), we have τ ∗(f)(ϕ) = f(τ(ϕ)) =

f(ϕ(a)). Hence we obtain an isometric ∗-isomorphism ρ = G −1 ◦ τ ∗ : C(σ(a)) →

C∗(a) ⊂ A . This mapping is the functional calculus for a. Note that, for a polynomial

p = p(z, z) viewed as an element of C(σ(a)), that ρ(p) = p(a, a∗) and moreover ρ is

the unique isometric ∗-homomorphism from C(σ(a)) → A sending p to p(a, a∗) (since

polynomials in z and z∗ = z are dense in C(σ(a)) by Stone-Weierstrass). It is customary

to write f(a) = ρ(f).

Proposition 27.7 (Spectral mapping). Suppose a ∈ A is normal. For f ∈ C(σ(a)),

σ(f(a)) = f(σ(a))

and ‖f(a)‖ = max{|f(z)| : z ∈ σ(a)}.

Proof. Since ρ is a ∗-isomorphism, f − λ is invertible if and only if ρ(f − λ) = ρ(f)− λ

is invertible. Hence f(σ(a)) = σ(f) = σ(f(a)). �

An element u ∈ A is unitary if u∗u = uu∗ = 1. In particular u is invertible and

normal.
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prop:unitary-fn-cal Proposition 27.8. If u is unitary, then σ(u) ⊂ T = {|z| = 1}. In particular, if p is an

analytic polynomial p(z) =
∑
pjz

j, then

‖p(u)‖ = max({|p(z)| : z ∈ σ(u)} ≤ max({|p(z)| : z ∈ T}) = sup{|p(z)| : |z| < 1}.

Proof. Let Σ denote the maximal ideal space of C∗(u). In particular each ϕ ∈ Σ is a

∗-homomorphism. Thus 1 = ϕ(1) = ϕ(u∗u) = |ϕ(u)|2. Hence |ϕ(u)| = 1 and the proof

of the first part is complete. (Or appeal to the earlier result about isometric elements

in a C-star algebra.)

The second part (the equality) is simply an instance of the maximum principle. �

27.2. Positive and contractive elements in a C-star algebra. An element a in

a C-star algebra with unit A is positive (semidefinite), denoted a � 0 if a = a∗ and

σ(a) ⊂ [0,∞). For instance, if X is a compact Hausdorff space, then an element f ∈

C(X) is positive if and only if the range of f lies in [0,∞). Moreover, if ρ : C(X)→ A

is a ∗-homomorphism and f � 0, then ρ(f) � 0; and if ρ is an isometric ∗-isomorphism,

then ρ(f) � 0 if and only if f � 0.

Lemma 27.9. Suppose A is a unital C-star algebra and a ∈ A is hermitian.

(i) If σ(a) = {0}, then a = 0;

(ii) If ±a � 0, then a = 0;

(iii) If a2 = 0, then a = 0;

(iv) a2 is positive;
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(v) There exists positive elements p, q ∈ C∗(a) such that pq = 0 and q = p2 − q2. In

particular, if a is positive, then q = 0;

(vi) If a is postive, then each n ∈ N+ there exists a positive b such that bn = a;

(vii) If ‖1− a‖ ≤ 1, then a is positive;

(viii) If a is positive, then ‖t− a‖ ≤ t for all t ≥ ‖a‖.

Proof. Since a is hermitian, ‖a‖ = r(a), the spectral radius. Hence, if σ(a) = {0}, then

a = 0. If ±a � 0, then ±σ(a) ⊂ [0,∞) in which case σ(a) = {0} and hence a = 0.

If a2 = 0, then σ(a2) = {0} and hence, using spectral mapping σ(a) = σ(a)2 = {0}.

Thus a = 0. Since a is hermitian, σ(a) ⊂ R. Thus using the functional calculus,

σ(a2) = σ(a)2 ⊂ [0,∞). Hence a is positive.

Let ρ : C(σ(a)) 7→ C∗(a) denote the functional calculus. Consider the functions

u, v : R → R defined by u(t) = max{0, t} and v = −min{0, t}. Thus u − v = ι is

the identity function ι(t) = t and both u, v are positive functions. Hence a = ρ(ι) =

ρ(u)−ρ(v). Letting u
1
2 and v

1
2 denote the (pointwise) positive square roots and p = ρ(u

1
2 )

and q = ρ(v
1
2 ), it follows that a = p2 − q2 and pq = 0. If a is positive, then v = 0 and

hence q = 0. In this case, for n ∈ N+, we have a = ρ(iota
1
n )n.

Using again the functional calculus, ρ(ι) = a, observe that ‖1 − ι‖ ≤ 1 implies

|1 − ι| ≤ 1 pointwise. Hence the range(ι) ⊂ [0, 2] and therefore ι, and hence a, is

positive. Finally, if a is positive, then, for t ≥ ‖a‖, pointwise |ι| ≤ ‖a‖ ≤ t and therefore

0 ≤ t− ι ≤ t. Hence ‖t− ι‖ ≤ t. �
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Let A+ denote the positive elements in the unital C-star algebra A .

Proposition 27.10. The set A+ is a closed cone; i.e., it is a closed set that is closed

under addition and multiplication by nonnegative scalars.

Proof. That A+ is closed under multiplication by a λ ≥ 0 is evident. Now suppose

a, b ∈ A+. By multiplying by a λ > 0, we may assume that ‖a‖, ‖b‖ ≤ 1. Thus,

‖2− (a+ b)‖ ≤ [‖1− a‖+ ‖1− b‖] ≤ 2

by the last part of the lemma. Hence, by the next to last part of the lemma, a+b
2

, and

hence, a is positive.

To prove A+ is closed, use, a = a∗, the fact that ‖‖a‖ − a‖ ≤ ‖a‖ if and only if

a � 0. �

Proposition 27.11. For a ∈ A , a unital C-star algebra, the following are equivalent.

(i) a is positive;

(ii) there is a positive b ∈ A such that a = b2;

(iii) there is a a hermitian b ∈ A such that a = b2;

(iv) there is an x ∈ A such that a = x∗x;

Proof. The previous lemma shows (i) and (ii) are equivalent. Evidently (ii) implies (iii)

implies (iv).

If (iv) holds with a = x∗x, then a = a∗ and, from the lemma, there exists p, q ∈ C∗(a)

such that p, q � 0, pq = 0 and a = p2−q2. Let b+ ic denote the cartesian decomposition
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of xq. Thus,

b2 + c2 + i(bc− cb) = (b− ic)(b+ ic) = qx∗xq = qaq = q(p2 − q2)q = −q4.

It follows that ±q4 � 0 and therefore q4 = 0. Hence q = 0. �

Proposition 27.12. Let H be a Hilbert space. An element P ∈ B(H) is positive if and

only if 〈Px, x〉 ≥ 0 for all x ∈ H.

(Caution: the condition P = P ∗ needs to be added in the case of real Hilbert space.)

Proof. If P is positive, then P = X∗X for some X ∈ B(H). Hence, for x ∈ H,

〈Px, x〉 = 〈X∗Xx, x〉 = 〈Xx,Xx〉 ≥ 0.

Conversely, suppose 〈Px, x〉 ≥ 0 for all x ∈ H. It follow that

〈(P − P ∗)x, x〉 = 〈Px, x〉 − 〈x, Px〉 = 0

since both terms are real. Hence P = P ∗ and in particular σ(P ) ⊂ R. Now suppose

λ > 0. For x ∈ X,

‖(P + λ)x‖2 = ‖Px‖2 + 2〈Px, x〉+ λ2‖x‖2 ≥ λ2‖x‖2.

It follows that P + λ has no kernel and the range of P + λ. Thus range(P + λ) =

ker((P + λ)∗)⊥ = ker(P + λ)⊥ = H. By the Banach isomorphism theorem, P + λ is

invertible. Hence σ(P ) ⊂ [0,∞). �
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27.3. Contractions on Hilbert space and the de Branges-Rovnyak construc-

tion. Let H denote a Hilbert space (over C). An operator C ∈ B(H) is a contraction

if ‖C‖ ≤ 1.

Proposition 27.13. C is a contraction if and only if I − C∗C � 0.

Proof. We have I − C∗C � 0 if and only if for all x ∈ H,

0 ≤ 〈(I − C∗C)x, x〉 = 〈x, x〉 − 〈Cx,Cx〉 = ‖x‖2 − ‖Cx‖2

if and only if ‖C‖ ≤ 1. �

The operator I − C∗C being positive (semidefinite) has a positive square root (1−

C∗C)
1
2 denoted DC and referred to as the defect of T .

An operator T on a Hilbert space H lifts to an operator J on a Hilbert space K if

there exist an isometry V : H → K such that

V T = JV.

Note, in this case, if p ∈ C[z] is a polynomial, then

V p(T ) = p(J)V.

Hence sometimes a lift is referred to as a C[z]-lift. An operator T on a Hilbert space H

is a C0-contraction if ‖T‖ ≤ 1 and limT nh = 0 for each h ∈ H. The adjoint S∗ of the

shift operator S is an example of a C0-contraction.
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Given a Hilbert space E, let K+(E) = ⊕∞j=0E = `2
E(N) consisting of those sequences

{(ej) = ⊕∞j=0ej :
∑
‖ej‖2 <∞} with the inner product,

〈e, f〉 = 〈(ej), (fk)〉 =
∑
〈ej, fj〉.

It is an exercise to verify that K+ is a Hilbert space. The corresponding shift operator

SE is defined by (SEe)j = 0 if j = 0 and (Se)j = ej−1 for j > 0. The multiplicity of SE is

the dimension of E and any two shifts of the same multiplicity are unitarily equivalent.

Proposition 27.14. The operator SE is an isometry with σ(SE) = D. Its adjoint is

given by

S∗E ⊕ ej = ⊕ej+1.

In particular, S∗E has kernel {e : ej = 0, j > 0} (which we identify with E) and is a

C0-contraction.

Proof. We will prove the proposition for the case of the shift S of multiplicity one where

E = C. The general case is both similar and easily derived from this case. We already

know S is an isometry and in particular, ‖S‖ = 1. Hence σ(S) ⊂ D. Likewise we have

already seen that S∗ is the backward shift. Given λ ∈ D, let sλ = (λ
j
)∞j=0 ∈ `2(N) and

observe that S∗sλ = (λ
j+1

)∞j=0 = λsλ. Hence S∗ − λ has a non-trivial kernel and is thus

not invertible. Hence λ ∈ σ(S) and therefore D ⊂ σ(S) ⊂ D. Since the spectrum is

closed, the result follows. �

An operator T is a shift operator if it is unitarily equivalent to SE for some E.
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Theorem 27.15. An operator T is a C0-contraction if and only if T lifts to the adjoint

of a shift operator.

Proof. It is straightforward to verify if T lifts to the adjoint of a shift operator, then T

is a C0-contraction.

The proof of the converse is constructive - the de Branges-Rovnyak construction (a

variation of a construction of Rota). Suppose T is a C0-contraction. Let E denote the

closure of the range of DT , the defect of T . Define V : H → `2
E(N) by

V h = ⊕DTT
jh.

A computation shows V is an isometry. Moreover,

S∗EV h = S∗E ⊕∞j=0 DTT
jh = ⊕DTT

j+1h = V Th.

Hence S∗E lifts T . �

Given a Hilbert space E, let K = `2
E(Z) = ⊕∞j=−∞E and define UE : K → K by

U ⊕ ej = ej+1.

A computation shows U∗ = U−1 is given by

U∗ ⊕ ej = ej−1.

In particular U is a unitary operator. An operator T is a bilateral shift if there is a

Hilbert space E such that T is unitarily equivalent to UE.
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Proposition 27.16. The shift operator SE lifts to the bilateral shift operator UE. In

particular, a shift operator lifts to a bilateral shift (unitary operator).

An operator T ∈ B(H) dilates to an operator J ∈ B(K) or has a C[z]-dilation to J

if there is an isometry V : H → K such that

p(T ) = V ∗p(J)V,

for all p ∈ C[z]. Note that if T lifts to J , then T dilates to J and T ∗ dilates to J∗.

prop:Nagy-dil-dBR Proposition 27.17. If C ∈ B(H) is a C0-contraction, then C dilates to a bilateral

shift.

Proof. There is a Hilbert space E and isometry V : H → `2
E(N) such that V p(C) =

p(S∗E)V for p ∈ C[z]. Hence q(C∗) = V ∗q(SE)V for all q ∈ C[z]. The inclusion ι :

`2
E(N)→ `2

E(Z) is an isometry and q(SE) = ι∗q(UE)ι for all polynomials q ∈ C[z]. Hence

q(C∗) = W ∗q(UE)W where W = ι V . It now follows that p(C) = W ∗p(U∗E)W for all

polynomials p ∈ C[z]. �

Remark 27.18. The Sz.-Nagy dilation theorem is the assertion that a contraction

operator dilates to a unitary operator. In particular, the hypothesis and conclusion of

the Nagy dilation theorem are both slightly different than that of Proposition
prop:Nagy-dil-dBR
27.17. It

has a relatively simple geometric proof. �

thm:vn-inequality Theorem 27.19 (The von Neumann inequality). If C ∈ B(H) is a contraction and

p(z) =
∑N

j=0 pjz
j is a polynomial, then ‖p(C)‖ ≤ ‖p‖∞,D.
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Proof. By the Sz.-Nagy dilation theorem there is a Hilbert space K and isometry V such

that for all polynomials q ∈ C[z],

q(C) = V ∗q(U)V.

By Proposition
prop:unitary-fn-cal
27.8, ‖p(U)‖ ≤ ‖p‖∞,D. Thus,

‖p(C)‖ ≤ ‖V ∗‖ ‖p(U)‖ ‖V ‖ ≤ ‖p‖∞,D.

�

27.4. Spectral measures. Let H denote a Hilbert space (over C). For h ∈ H, let rh :

B(H)→ [0,∞) denote the function rh(T ) = ‖Th‖. The strong operator topology (SOT)

on H is the topology generated by the functions {rh : h ∈ H}. In particular, a sequence

(Tn) from B(H) SOT converges to T ∈ B(H) if and only if limn→∞ ‖(T − Tn)h‖ = 0

for all h ∈ H. In particular, T is a C0-contraction if and only if ‖T‖ ≤ 1 and (T n)

SOT-converges to 0.

An B(H)-valued spectral measure on a measurable space (X,Σ) is a mapping E :

Σ→ B(H) such that

(i) E(X) = I, the identity mapping;

(ii) E(∅) = 0;

(iii) E is projection valued meaning if σ ∈ Σ, then E(σ) is a projection;

(iv) if (ωj)
∞
j=1 is a disjoint sequence of sets from Σ, then the series

∞∑
j=1

E(ωj)
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SOT-converges to E(∪ωj).

Given self-adjoint (hermitian) operators P,R on a Hilbert space H the notation

P � R means R−P � 0. This partial order on the self-adjoint elements of B(H) is the

Loewner ordering.

Lemma 27.20. Suppose P,Q ∈ B(H). If P,Q and P + Q are all projections, then

PQ = QP = 0.

Proof. The equality P + Q = (P + Q)2 implies PQ + QP = 0. Multiplying this last

equation on both sides by Q gives, 0 = 2QPQ = 2QPPQ = 2Y ∗Y , where Y = PQ.

Thus PQ = Y = 0. �

Proposition 27.21. Suppose E is an B(H)-valued spectral measure on (X,Σ) and

ω, ρ ∈ Σ.

(i) if ω ∩ ρ = ∅, then E(ω)E(ρ) = 0;

(ii) if ω ⊂ ρ, then

E(ρ) = E(ρ \ ω) + E(ω) (89) eq:Eadd

and therefore

(a) E(ω) � E(ρ); and

(b) E(ω)E(ρ) = E(ω);

(iii) E(ω ∩ ρ) = E(ω)E(ρ) = E(ρ)E(ω).
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Proof. Letting P = E(ω) and Q = E(ρ) by additivity of E, all of P,Q and P + Q

are projections. Hence PQ = 0. Item (ii)(a) follows immediately from (i). For (ii)(b),

multiply equation (
eq:Eadd
89) on the right by E(ω) and apply (i).

To prove (iii) observe

E(ω ∪ ρ) + E(ω ∩ ρ) = E(ω) + E(ρ), (90) eq:EdeM

an identity that follows from

A ∪B =(A \B) ∪ (B \ A) ∪ (A ∩B)

A =(A \B) ∪ (A ∩B)

B =(B \ A) ∪ (A ∩B).

Multiplying equation equation (
eq:EdeM
90) on the right by E(ω) gives

E(ω ∪ ρ)E(ω) + E(ω ∩ ρ)E(ω) = E(ω)2 + E(ρ)E(ω).

Using (ii)(b) on each term on the left hand side, gives

E(ω) + E(ω ∩ ρ) = E(ω) + E(ρ)E(ω)

from which the result follows. �

Example 27.22. Let N be a normal matrix of size n. From undergraduate linear

algebra, N is unitarily equivalent to a diagonal matrix; i.e., there exists a unitary U and

a diagonal matrix D = diag(λ1, . . . , λn) such that N = UDU∗. Letting uj denote the

columns of u

N =
∑

λjuju
∗
j
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and of course σ(N) = {λ1, . . . , λn}. Letting Pj denote the rank one matrix uju
∗
j . Since

U is unitary, each uju
∗
j is a projection and moreover, PjPk = 0 for j 6= k Letting E

denote the mapping on the Borel sets of C defined by

E(ω) =
∑
λj∈ω

uju
∗
j =

∑
λj∈ω

Pj

gives a spectral measure and

N =
∑

λkE({λk}).

Moreover, if f is a polynomial, then

f(N) =
∑

f(λj)Pj.

4

Example 27.23. Let (X,M , µ) denote a measure space. Define a L2(µ)-valued spectral

measure E on M as follows. Given A ∈ M , let E(A) : L2(µ) → L2(µ) denote the

mapping defined by E(A)f = 1Af . Given (Aj) a disjoint sequence from M and f ∈

L2(µ), observe that

N∑
j=1

E(Aj)f = E(∪Nj=1Aj)f =
∑

1∪NAjf

converges to 1∪Ajf by the dominated convergence theorem. Hence
∑
E(Aj) converges

SOT to E(∪Aj). 4

prop:Egh Proposition 27.24. If E is an B(H)-valued spectral measure on (X,Σ) and if h, k ∈ H,

then µh,k : Σ → C defined by µh,k(ω) = 〈E(ω)h, k〉 is a measure with total variation

|µh,k|(X) := ‖µh,k‖ ≤ ‖h‖ ‖k‖.
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Part of proof. Let Π = {ω1, . . . , ωn} be a given measurable partition of X. For each j

there is a unimodular γj ∈ C such that

γj 〈E(ωj)h, k〉 ≥ 0.

Hence, ∑
|〈E(ωj)h, k〉| =

∑
γj〈E(ωj)h, k〉

=〈
∑

E(ωj)γjh, k〉

=|〈
∑

E(ωj)γjh, k〉|

≤‖
∑

E(ωj)γjh‖ ‖k‖.

Now the vectors h′j = E(ωj)γjh and h′′j = E(ωj)h are pairwise orthogonal (since the ωj

are disjoint). Hence,

‖
∑

E(ωj)γjh‖2 =
∑
‖E(ωj)γjh‖2 =

∑
‖E(ωj)h‖2 = ‖

∑
E(ωj)h‖2 = ‖h‖2.

Putting things together gives,

∑
|µh,k(ωj)| =

∑
|〈E(ωj)h, k〉| ≤ ‖h‖ ‖k‖

and the result follows by the definition of total variation norm. �

Spectral measures share many properties of measures and we will use these proper-

ties without (or with little) comment in what follows. As an example, we can assume

if E(ρ) = 0, then Σ contains all subsets of ρ. A measurable function f : X → C is

essentially bounded (with respect to E) if there is a C such that E({|f(x)| > C}) = 0

and in this case ‖f‖∞ is the infimum of such C. The collection of such function, L∞(E),

is a C-star algebra. Given a measurable space (X,M ), let B(X) = B(X,M ) denote the
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bounded (C-valued) functions on X. It is a C-star algebra (under the usual pointwise

operations and involution given by pointwise conjugation) and the supremum norm.

prop:specint0 Proposition 27.25. If E is an B(H)-valued spectral measure on (X,M ) and f ∈

B(X), then there is a unique operator I(f) ∈ B(H) such that for every ε > 0, each

measurable partition {A1, . . . , An} of X with sup{|f(x)− f(y)| : x, y ∈ Aj} < ε for each

j, and each choice of xj ∈ Aj,

‖I(f)−
∑

f(xj)E(Aj)‖ < ε.

Moreover, if A ∈M , then I(1A) = E(A).

A mapping J : H×H → C is sesquilinear if, for all g, h, k ∈ H and c ∈ C, g, h, k ∈ H

and c ∈ C,

J(g, h+ ck) =J(g, h) + cJ(g, k)

J(g + ch, k) =J(g, k) + cJ(h, k)

J(g, h) =J(h, g).

The form is bounded if there is a (real) constant C such that

|J(h, k)| ≤ C ‖h‖ ‖k‖.

In this case the infimum over all such C is the norm of J . If T ∈ B(H), then J(h, k) =

〈Th, k〉 is a bounded sesquilinear form with ‖J‖ = ‖T‖.
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lem:seslinearform Lemma 27.26. If J is a bounded sesquilinear form on the Hilbert space H, then there

is a uniquely determined bounded operator T on H such that

〈Th, k〉 = J(h, k).

Moreover, ‖T‖ is the norm of J .

Sketch of proof. Fix k ∈ H. The mapping λk : H → C defined by λk(h) = J(h, k)

is linear and bounded with norm at most C‖k‖. Hence, by the Riesz representation

theorem, there is a vector k∗ ∈ H such that ‖k∗‖ ≤ C‖k‖ and

J(h, k) = 〈h, k∗〉.

Since J is conjugate linear in the second variable, the mapping k → k∗ is linear. Let

A denote this mapping. In particular, ‖Ak‖ = ‖k∗‖ ≤ C‖k‖. Hence A is bounded and

‖A‖ ≤ C and for h, k ∈ H,

J(h, k) = 〈h,Ak〉.

Choose T = A∗. �

Sketch of proof of Proposition
prop:specint0
27.25. Fix f ∈ B(X). Define J : H × H → C by

J(h, k) =
∫
f dµh,k. Verify that J is sesquilinear and |J(h, k)| ≤ ‖f‖∞ ‖h‖ ‖k‖. Thus J

is a bounded sesquilinear form. Thus, there is a (uniquely determined) bounded linear

operator I(f) such that

〈I(f)h, k〉 = J(h, k) =

∫
f dµh,k.
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Now suppose ε > 0, a partition and points xj as specified in the statement of the

proposition are given and estimate, for h, k ∈ H,

|〈[I(f)−
∑

f(xj)E(Aj)]h, k〉| =|
∑∫

Aj

(f − f(xj)) dµh,k|

≤
∑

ε|µh,k|(Aj)

=ε|µh,k|(X) ≤ ε‖h‖ ‖k‖.
�

We write
∫
f dE for I(f) and call it the spectral integral of f .

Proposition 27.27. Suppose (X,M ) is a measure space and E is an B(H)-valued spec-

tral measure on X. The mapping I : B(X)→ B(H) is a contractive ∗-homomorphism.

Sketch of proof. While not particularly difficult, the most challenging part is to show I

is multiplicative. The remainder of the proof is left to the gentle reader.

Fix f, g ∈ B(X) and let ε > 0 be given. Choose a measurable partition {A1, . . . , An}

of X such that sup{|F (x)− F (y)| : x, y ∈ Aj} < ε for each j and F ∈ {f, g, fg}. Given

xj ∈ Aj, note that

∑
j

f(xj)g(xj)E(Aj) =
∑
j,k

f(xj)g(xk)E(Aj)E(Ak),

since E(Aj)E(Ak) = E(Aj ∩ Ak) = 0 for j 6= k. From here the proof is messy, but

standard. �

Proposition 27.28. If X is a compact Hausorff space and ρ : C(X) → B(H) is a

unital isometric ∗-homomorphism, then there is a uniquely determined spectral measure
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on the Borel sets of X such that, for f ∈ C(X),

ρ(f) =

∫
f dE.

Sketch of proof. The first step is to extend ρ to an contractive ∗-homomorphism τ :

B(X)→ B(H). Given h, k ∈ H, let ρh,k : C(X)→ C denote the linear functional

ρh,k(f) = 〈ρ(f)h, k〉.

By the Riesz-Markov Theorem, for each h, k ∈ H there is a unique Borel measure µh,k

such that

ρh,k(f) =

∫
f dµh,k

and moreover, ‖h‖ ‖k‖ ≥ ‖ρh,k‖ = |µh,k|(X). One checks that the mapping H × H →

M(X) (the space of measures) given by (h, k)→ µh,k is sesquilinear.

Given g ∈ B(X) we obtain the sesquilinear form J : H ×H → C given by

J(h, k) =

∫
g dµh,k.

Evidently |J(h, k)| ≤ ‖g‖∞ |µh,k|(X) ≤ ‖g‖∞ ‖h‖ ‖k‖. Hence there is a uniquely deter-

mined bounded linear operator τ(g) such that

〈τ(g)h, k〉 = J(h, k) =

∫
g dµh,k.

In particular, if g ∈ C(X), then τ(g) = ρ(g) and ‖τ(g)‖ ≤ ‖g‖∞.

We will verify that τ is multiplicative, leaving the rest of the verification that τ is

a ∗-homomorphism (and hence contractive) to the gentle reader. If f, g ∈ C(X), then
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τ(fg) = ρ(fg) = ρ(f)ρ(g). Hence,

〈τ(fg)h, k〉 =

∫
fg dµh,k

=〈ρ(f)ρ(g)h, k〉

=

∫
f dµρ(g)h,k.

In particular, g dµh,k = dµρ(g)h,k as measures. Thus, for f ∈ B(X),

〈τ(fg)h, k]〉 =

∫
fg dµh,k

=

∫
f dµρ(g)h,k

=〈τ(f)ρ(g)h, k〉

=〈ρ(g)h, τ(f)∗k〉

=

∫
g dµh,τ(f)∗k.

Hence τ(fg) = τ(f)τ(g) for f ∈ B(X) and g ∈ C(X). Moreover, f dµh,k = dµh,τ(f)∗k.

Thus, for g ∈ B(X),

〈τ(fg)h, k〉 =

∫
fgd µh,k

=

∫
g dµh,τ(f)∗k

=〈τ(g)h, τ(f)∗k〉

=〈τ(f)τ(g)h, k〉

and hence τ(fg) = τ(f)τ(g) for all f, g ∈ B(X). That τ is contractive, additive, respects

scalar multiplication and satisfies τ(f ∗) = τ(f)∗ are left as exercises.

Given a Borel set ω, let E(ω) = τ(1ω). Thus E(∅) = 0, E(X) = τ(1) = I and E

is finitely additive. Now suppose (fn) is a bounded sequence from B(X) that converges
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pointwise to f (automatically in B(X)). Given h ∈ H,

‖τ(fn − f)h‖2 =〈(τ(fn − f)∗ τ(fn − f))h, h〉

=〈τ(|fn − f |2)h, k〉

=

∫
|fn − f |2 dµh,k

Now |fn− f |2 is a (uniformly) bounded sequence converging to 0 pointwise. Thus, since

|µh,k| is a finite measure, the sequence of integrals above converges to 0 by dominated

convergence. Thus (τ(fn)) SOT-converges to τ(f). Now let (ωj)
∞
j=1 be a sequence of

pairwise disjoint measurable sets and let fn =
∑n

j=1 1ωj . Hence (fn) is a bounded se-

quence of measurable functions that converges pointwise to f , the characteristic function

of ω = ∪ωj. Hence τ(fn) SOT-converges to f ; i.e.,

SOT lim τ(fn) =
∞∑
j=1

E(ω) = E(ω) = τ(f).

Thus E is a spectral measure on the Borel sets of X.

If s =
∑
cj1ωj is a simple measurable function, then

τ(s) =
∑

cjτ(1ωj) =
∑

cjE(ωj) =

∫
s dE.

Since an f ∈ B(X) is a uniform limit of simple functions (sn) and τ is contractive,

(τ(sn)) converges in norm to τ(f). Likewise, since the mapping I : B(X)→ B(H) given

by I(h) =
∫
h dE is contractive, (I(sn)) converges to I(f). Using I(sn) =

∫
sn dE, it

follows that

τ(f) =

∫
f dE

for f ∈ B(X).
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�

Theorem 27.29 (Spectral Theorem). Suppose A ⊂ B(H) is a commutative sub-C-star

algebra with maximal ideal space Σ and let G : A → C(Σ) denote the Gelfand transform.

There is an B(H)-valued spectral measure E such that

(1) for T ∈ A ,

T =

∫
Σ

G (T ) dE,

(2) if ∅ 6= O ⊂ Σ is open, then E(O) 6= 0;

(3) R ∈ B(H) commutes with A if and only if RE(ω) = E(ω)R for all ω ∈ Σ.

Sketch of proof. The inverse of the Gelfand transform G −1 : C(Σ) → A ⊂ B(H) is an

isometric ∗-isomorphism. Hence there is an B(H)-valued spectral measure on the Borel

sets of Σ such that

G −1(f) =

∫
f dE

for f ∈ C(Σ). Choose f = G (T ) to obtain the first item.

If ∅O ⊂ Σ is open, then there exists a non-zero continuous function f that is 0 on

OC . Hence, ‖G −1(f)‖ > 0 and hence E(O) 6= 0.

Suppose R commutes with each E(ω). Given h, k ∈ H and ω a Borel set,

〈E(ω)Rh, k〉 = 〈E(ω)h,R∗k〉.
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Thus, dµRh,k = dµh,R∗k. Hence, for f ∈ C(Σ),

〈[
∫
f dE]Rh, k〉 =

∫
f dµRh,k

=

∫
f dµh,R∗k

=〈
∫
f dE h,R∗k〉

=〈R
∫
f dE h, k〉

Conversely, if R commutes with A , then for each f ∈ C(Σ) and pair of vectors h, k,∫
f dµRh,k =〈[

∫
f dE]Rh, k〉

=〈[
∫
f dE]h,R∗k〉

=

∫
f dµh,R∗k.

Hence µRh,k = µh,R∗k and consequently 〈E(ω)Rh, k〉 = 〈RE(ω)h, k〉 for all measurable

sets ω and vectors h, k ∈ H. The result follows. �

Corollary 27.30 (Spectral Theorem). If T ∈ B(H) is normal, then there exists an

B(H)-valued spectral measure E on the Borel sets of σ(T ) such that

f(T ) =

∫
f dE;

i.e., the isometric ∗-homomorphism I : L∞(E)→ B(H) given by I(f) =
∫
f dE extends

the functional calculus.

Proof. Let C∗(T ) denote the C-star algebra generated by T . Thus C∗(T ) is a commu-

tative C-star algebra and its maximal ideal space Σ is identified with σ(T ) ⊂ C via the

homeomorphism ψ : Σ → σ(T ) given by ψ(h) = G (T )(h). Hence there is a uniquely
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determined spectral measure E on σ(T ) such that, for polynomials p(z, z∗) (viewed as

elements of C(σ(T )),

p(T, T ∗) =

∫
σ(T )

G (p(T, T ∗) ◦ ψ−1 dE.

Unraveling the definitions, G (p(T, T ∗) ◦ ψ−1(z, z∗) = p(z, z∗); i.e.,

ρ(p) =

∫
p dE,

where ρ is the functional calculus. By continuity, ρ(f) =
∫
f dE for f ∈ C(σ(T )). �
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